Deeper:
Last week, I described four design patterns for AI agentic workflows that I believe will drive significant progress: Reflection, Tool use, Planning and Multi-agent collaboration. Instead of having an LLM generate its final output directly, an agentic workflow prompts the LLM multiple times...
www.linkedin.com
Last week, I described four design patterns for AI agentic workflows that I believe will drive significant progress: Reflection, Tool use, Planning and Multi-agent collaboration. Instead of having an LLM generate its final output directly, an agentic workflow prompts the LLM multiple times, giving it opportunities to build step by step to higher-quality output. Here, I'd like to discuss Reflection.
It's relatively quick to implement, and I've seen it lead to surprising performance gains. You may have had the experience of prompting ChatGPT/Claude/Gemini, receiving unsatisfactory output, delivering critical feedback to help the LLM improve its response, and then getting a better response.
What if you automate the step of delivering critical feedback, so the model automatically criticizes its own output and improves its response?
This is the crux of Reflection.
ake the task of asking an LLM to write code. We can prompt it to generate...