BRN Discussion Ongoing

Sirod69

bavarian girl ;-)
Anthony J James (AJ)


Anthony J James (AJ)• 3.+Innovation und Wachstum des CEO.

Themen: #marketing, #creativity, #innovation, #management und #technology
  • 1519932056711

    Trinity Consulting Services
Sydney CBD, Neu Süd Wales, Australien
Amazing experience driving the Mercedes VISION EQXX on the Vegas Strip during CES awesome technology and engineering
Thank you Mercedes-Benz AG

 
  • Like
  • Fire
  • Love
Reactions: 13 users

Violin1

Regular
You are making an incorrect statement. It should read “what in the heavens could that be?”
You won’t recognise much in hell. 😂😂
Remind me to tell you the hell joke at the AGM.
 
  • Like
  • Haha
Reactions: 4 users

Getupthere

Regular
 
  • Like
  • Love
  • Fire
Reactions: 24 users
Of course none of this has the slightest interest to the owner of a well funded business with a growing ecosystem and secure product engagements with major customers because owners of businesses know that economic conditions wax and wane and by running a tight ship all conditions will be encountered and weathered.

TSEx general discussion thread is for BRNASX business owners or in more familiar language it is an investor shareholders meeting place or thread.

This is not a trading thread and your analysis has no place here.

There are threads for traders and if they are not to your liking create a new one.

A trader here can only be seen as attempting to manipulate.

Your continuing commentary which now slants towards there being long term business success makes for all the business owners here very transparent that your commentary on holding 70 cents is of absolutely no value whatsoever.

As business owners BRNASX trading at 50 cents or $2.00 has no implication for the market price of AKIDA IP or Edge Impulses platform with Brainchip on board being adopted by developers, Renesas paying royalties on mass produced products and Mercedes Benz using AKIDA technology in cabin to diminish power use across its fleet.

The Chair of Brainchip’s Board made it clear at the AGM that the share price will do what the share price will do but Brainchip the business will continue on growing and building on its successes, partnerships and ecosystems while continuing to advance its technological lead regardless.

If you are on a mission to protect investors go and protect the traders as your analysis has no relevance here.

My opinion only DYOR
FF

AKIDA BALLISTA
Ok, Fact Finder has spoken.. I respect your opinion and will oblige..

I will leave with stating I started out as a BRN shareholder 5 years ago and have been in and out multiple times. That is staying true to my investing model. I am well ahead on BRN.

Technical Analysis and disciplined risk management has not ever let me down whereas falling in love with a company and ignoring technical analysis has let me down multiple times. I remain firmly if that opinion.

Thanks for the hard research and efforts to keep people informed on the BRN story and regular updates..

Good luck to all BRN holders and may the journey be as successful as you all envisage.. Be your own person and think for yourself. It will benefit you more in the long run..
 
  • Like
  • Love
  • Haha
Reactions: 11 users

Violin1

Regular
I think that is too early for explosive sales. Hoping for decent sales at the backend of 2023. For me its better to have lower expectations and be surprised then the other way around. There was a ton of progress and partnerships announced last year and that takes time to come to fruition.
Spot on (IMO) @equanimous - our expectations are sooooo high - but the reality is that we all know how long it takes to do mass production. We have a couple of important clients with licence agreements - but it is only a couple so far and the revenue flow will take a while. I have absolutely no doubts about our company - but I just reckon the next couple of 4cs won't deliver on some people's dreams. We just need to be measured - most likely we will draw down on some more LDA funds (likely the last drawdown) as per our agreement - and I believe this will be the last one before we breakeven on our $20m outgoings per year. Our whole gig is based on patience! It is really a great thing I play golf!

I've said before - don't go crazy on the 4c if it has little revenue. I'll be waiting to buy more when everyone goes silly and play into the hands of manipulators! Pleeeease don't make me buy them!
 
  • Like
  • Love
  • Fire
Reactions: 22 users
View attachment 26480


1673169587204.png



1673169980062.png

1673169647746.png

1673169898270.png


 
  • Like
  • Fire
  • Love
Reactions: 18 users
I'm sure I recall some discussions previously on Blues Wireless and whether there was compatibility(?) etc I think.

Well, whilst not listed within Edge Impulse main pages, they were buried in the forum section and apparently Impulse Dev compatible for the Swan. Also runs on a STM MCU :unsure:

Swan is a low-cost, embeddable STM32L4-based microcontroller designed to accelerate the development and deployment of battery-powered IoT solutions. It is especially useful for applications requiring large memory or a high degree of I/O expandability at an affordable cost, such as edge inferencing and remote monitoring.





1673169699203.png


1673169756759.png
 
  • Like
  • Fire
  • Love
Reactions: 13 users
I'm sure I recall some discussions previously on Blues Wireless and whether there was compatibility(?) etc I think.

Think it was BluWireless FMF. Confusingly similar names. Hopefully you’ve unearthed another possibility

@MC🐠 had a host of dots here for BluWireless
 
  • Like
  • Fire
Reactions: 9 users

TECH

Regular
Ahh bloody toilets and dodgy plumbing hey, fun, fun.

I guess my expectations differ from reality. I have no doubt that deals and commercial relationships are being made behind the scenes. I also realise that these negotiations would be highly confidential and rightly so - that's reality.

My expectations after Rob Telson's pre CES comments about showcasing AKIDA tech with numerous partners clearly differs from reality. A sign with AKIDA written on it at a demo booth does not qualify as 'showcasing' in my reality. I imagined Rob, Anil, et al with our partners actually demonstrating to a crowd of CES visitors and media how amazing AKIDA is and what it can do to improve products and the world. I clearly have set myself up for disappointment and will temper my expectations in future.

Perhaps in this competitive tech world it's the pretenders who crow from the rooftops while the genuine contenders remain confidentially silent - I hope so.

Hey Foxdog,

Pace yourself mate, today I heard a USB would be available for developers by late 2022, I heard Renesas will have mass production of product/s in the marketplace probably by late 2023, it takes 1/3 years to produce a chip, which we aren't in the business of doing anymore, we're an IP vendor as such, NASA is making progress, but it's highly classified, they and we cannot comment, Agriculture, Farming, you name it, the potential is endless, not maybe, definitely!

We are a brilliant young company bringing "disruptive technology" to the entire world, at times it's like pulling teeth, all pain and seemingly no progress, when I get told personally that the company is working really hard to achieve all our dreams, well, I am 100% comfortable that, that's the truth!

I'd back the staff we have NOW to close out deals, but we are at the mercy of lots of companies who need that extra time to commit to Akida and its amazing future, at this point in time, the only losers, as such, will be the ones who don't commit in the next few years, why, because they would have well and truly missed the first 10 steps up the ladder to Neuromorphic Heaven.

I am going to be honest, the other day I did consider selling 500,000 shares at 86c, by the close of the day that was a $50,000 gain on the downside, I didn't, I thought about it and asked myself, "why bother Davo".... there's plenty of people trading our stock with much larger
volumes than what I considered, and hence, making very good money, but the day will come when we make two announcements, one after the other.... that is Revenue and an IP signing, Brainchip stock will move up faster than many here could comprehend, and that day is coming.

The names that are being bandied about, confirm that as a certainty, take a deep breath and enjoy the ride, as frustrating as it can be at times for all.

Tech (y);)
 
  • Like
  • Love
  • Fire
Reactions: 48 users
I think that is too early for explosive sales. Hoping for decent sales at the backend of 2023. For me its better to have lower expectations and be surprised then the other way around. There was a ton of progress and partnerships announced last year and that takes time to come to fruition.
One thing for sure is that their will be plenty of explosive verbal diarrhea being spewed if explosive sales aren't coming real soon. Which if so gives me another opportunity to make that one last top up again😄
Looking forward to seeing a Ken robot fully blinged out once the sales start kicking in decently.
 
  • Haha
  • Like
  • Love
Reactions: 9 users
Think it was BluWireless FMF. Confusingly similar names. Hopefully you’ve unearthed another possibility

@MC🐠 had a host of dots here for BluWireless
Hey, thanks mate.

Decided to actually do a word search to double check, probs should've done that first haha

BluWireless might be there but so is Blues Wireless that FF said are at CES :)

Not saying anything to do with us but is possible to use Edge Impulse on the Swan which can come with their Notecard and Notehub.

 
  • Like
  • Fire
  • Haha
Reactions: 10 users

Steve10

Regular
DJI charts from 1960-2023. Red vertical lines is when ema's golden crossed on daily chart when started rising after downtrend, 50ema crosses above 200ema.

Have 17 signals & 1 failure in October 1973. The RSI was not rising on 3 month & 6 month charts in 1973 along with 100ema didn't cross over 200ema.

The DJI 100ema should cross the 200ema this week & confirm bottom has passed. Nasdaq & S&P500 will follow DJI.

1673172674728.png



1673172690109.png
 
  • Like
  • Fire
  • Love
Reactions: 24 users
Info

 
  • Like
  • Love
  • Fire
Reactions: 9 users

equanimous

Norse clairvoyant shapeshifter goddess
One thing for sure is that their will be plenty of explosive verbal diarrhea being spewed if explosive sales aren't coming real soon. Which if so gives me another opportunity to make that one last top up again😄
Looking forward to seeing a Ken robot fully blinged out once the sales start kicking in decently.
ill have one ready for you ;)
 
  • Haha
  • Like
  • Love
Reactions: 3 users

The whole extract below is interesting:

Tim Llewellynn
Click here to view Tim Llewellynn’s profile

Tim Llewellynn​

CEO/Co-Founder of NVISO Human Behaviour…​

Published Jun 20, 2017
+ Follow
We are so proud to announce that our AI-specialist company nViso with our Financial Services lead product “EmotionAdvisor” has been accepted into the excellent FCA Innovation Sandbox in UK! If you missed it here is a quick overview of who got in.
Our application was focused around testing our Artificial Intelligence behavioural and emotion-recognition technology to prove whether we can help enhance financial services customers’ profiles for use in banking and insurance.
Innovation Sandboxes 👍
But first of all, what's an Innovation Sandbox? Just from my personal view, it's the regulator helping catalyze industry with start-ups to innovate faster around core issues. As we are new to this journey I can so far say it's been super helpful even during the application process to get a better feeling for how the regulator works, and what they're looking for.
As a white-label software provider, it's important we know the applicable rules and stand ready to answer financial services companies myriad processes and questions from their legal, compliance and regulatory as well as business and IT functions. As a CEO I run a team who face long lead times and a shadow of healthy scepticism in every meeting - so having started a process directly with a sharp regulatory team gives me much more confidence that we have all our ducks in a row headed into such a challenging environment.
I’ll be giving you more real-time updates here out of the Sandbox as we begin the testing process in late summer.
What Inspired us to Apply?
Until now, customer profiling and risk assessments have relied on static questionnaires and dogmatic questions around financial ability and appetite to withstand loss. Whereas we know from leading academic research that client behavioural reactions to loss and finance more generally are also correlate to other more intimate characteristics such as thinking style. Our technology can “read” and interpret such thinking styles by observing pre-emotional expression reactions in response to a series of stimuli, for example a short video. It's important to note we are not measuring fully processed emotions, but what happens in the 20-40 milliseconds before a person thinks through and expresses a reaction to another human.
"This is a critically important point - computers can read true emotional reactions better than humans can."
My goals out of the pilot are to further explore the use cases across Financial consumers’ life cycle with any given provider. We believe AI-driven emotional recognition has a number of important applications including prospecting for suitable customers, login and authentication, client profiling, creating active recommendations for products/services, and even as a more complete feedback loop to a client advisor and firm.
Emotion and Customers Financial Decisions are Highly Connected
As cited in the FCA’s RDR finalized guidance (2012), client profiling using automated tools must be reviewed carefully by a firm and enhanced where necessary to make a complete picture.
EmotionAdvisor is a set of skills we are developing for banks and insurers, asset and wealth managers to enhance their client profiles with behavioural finance relevant information in order to make sharper product, offering or advisory recommendations.
Our core belief is the better you know your client, the more accurate your recommendations and the more you can prove you aligned to their best interests.
EmotionAdvisor may be just what you're looking for to help plug that important gap between static MiFid profiling and true behavioural finance inputs.
About Us...
We're not your average early stage start-up talking about AI and machine learning. I've been CEO of nViso since 2009, we have 30 employees and are a spin-off and are still based out of EPFL (often called the MIT of Europe) and are an official partner with IBM Watson for machine learning and data analysis techniques development. We are now launching our fourth major client with our mainline Financial Services SaaS called EmotionAdvisor.
I also head up the European Union’s front-end offense as organizer of BONSEYES, the EU open marketplace for AI which has a budget of double-digit millions to build our Europe’s offensive capabilities and use cases across industry verticals such as Finance, Automotive, Consumer Retail and IoT among others. Our team is largely made up of PhDs and business people who know how to build and shape a product set.
Want to Learn More about AI and Finance
FCA’s RDR Finalised Guidance on Independent and restricted advice
FCA’s FARM final report
EmotionAdvisor prospectus on nViso website
Paul Ekman history
Are you a Head of Strategy, Digital, Innovation or Products & Services at a bank, insurer, asset or wealth manager, or a FinTech with a B2C offering? Send me a DM and I'd be happy to walk you through in more detail how our product set works and the results we've been able to achieve on behalf of our clients to date.
Please comment below with a question or opinion and I look forwards to answering and providing additional insights to all queries.
Tim
83 9 Comments
LikeCommentShare
LinkedIn User

LinkedIn User

Ben Robinson interesting read!
Like

Reply
6y

Richard Sheroff
Richard Sheroff
We are only scratching the surface. The culmination of real time data analytics on truly "big data" with predictive abilities is the disruptive technology that is far past due. It requires a new computing paradigm since the fundamental algorithms involved in handling sparse data is not suitable for Von Neumann architecture with their macho flops running at. 5% peak.
Like

Reply
2 Likes
6y

Tim Llewellynn
Tim Llewellynn
Completely agree we haven't even got to a stage where we have "fit-for-purpose" hardware for AI and data-driven software - we are still running around with legacy hardware repurposed. Once a stream of new hardware solutions can into the mainstream there will major disruption and capabilities available that weren't imaginable before.
Like

Reply
1 Like
6y

LinkedIn User

LinkedIn User

Patrick Barnert nViso.... and interesting about the FCA Sandbox...
Like

Reply
6y

Priyanka Pawar
Priyanka Pawar
Congrats Tim!
Like

Reply
2 Likes
6y

Igor Shaposhnikov
Igor Shaposhnikov
Very good, Tim! Congratulations!
Like

Reply
3 Likes
6y

🎤 Denyse Drummond-Dunn
🎤 Denyse Drummond-Dunn
Great news. Perhaps now UBS will realise what they missed last year?!
Like

Reply
3 Likes
6y

LinkedIn User

LinkedIn User

Congrats Tim & team, this is a huge step to learning the Finance vertical - he who learns most fastest wins! 🤜🏽
Like

Reply
3 Likes
6y

Michael O'Sullivan
Michael O'Sullivan
Kevin Knull, CFP® Anthony Clark-Jones Hester Turton Andreas Bolli Christian H. David Bruno Martin Weis
Like

Reply
2 Likes
 
  • Like
  • Fire
  • Love
Reactions: 23 users

TheFunkMachine

seeds have the potential to become trees.

This is a Norwegian Commercial for a grocery store( Rema 1000 ) and their slogan is “The simplest is often the best” i miss Norwegian TV some days.
 
  • Like
  • Love
Reactions: 7 users
The whole extract below is interesting:

Tim Llewellynn
Click here to view Tim Llewellynn’s profile

Tim Llewellynn​

CEO/Co-Founder of NVISO Human Behaviour…​

Published Jun 20, 2017
+ Follow
We are so proud to announce that our AI-specialist company nViso with our Financial Services lead product “EmotionAdvisor” has been accepted into the excellent FCA Innovation Sandbox in UK! If you missed it here is a quick overview of who got in.
Our application was focused around testing our Artificial Intelligence behavioural and emotion-recognition technology to prove whether we can help enhance financial services customers’ profiles for use in banking and insurance.
Innovation Sandboxes 👍
But first of all, what's an Innovation Sandbox? Just from my personal view, it's the regulator helping catalyze industry with start-ups to innovate faster around core issues. As we are new to this journey I can so far say it's been super helpful even during the application process to get a better feeling for how the regulator works, and what they're looking for.
As a white-label software provider, it's important we know the applicable rules and stand ready to answer financial services companies myriad processes and questions from their legal, compliance and regulatory as well as business and IT functions. As a CEO I run a team who face long lead times and a shadow of healthy scepticism in every meeting - so having started a process directly with a sharp regulatory team gives me much more confidence that we have all our ducks in a row headed into such a challenging environment.
I’ll be giving you more real-time updates here out of the Sandbox as we begin the testing process in late summer.
What Inspired us to Apply?
Until now, customer profiling and risk assessments have relied on static questionnaires and dogmatic questions around financial ability and appetite to withstand loss. Whereas we know from leading academic research that client behavioural reactions to loss and finance more generally are also correlate to other more intimate characteristics such as thinking style. Our technology can “read” and interpret such thinking styles by observing pre-emotional expression reactions in response to a series of stimuli, for example a short video. It's important to note we are not measuring fully processed emotions, but what happens in the 20-40 milliseconds before a person thinks through and expresses a reaction to another human.
"This is a critically important point - computers can read true emotional reactions better than humans can."
My goals out of the pilot are to further explore the use cases across Financial consumers’ life cycle with any given provider. We believe AI-driven emotional recognition has a number of important applications including prospecting for suitable customers, login and authentication, client profiling, creating active recommendations for products/services, and even as a more complete feedback loop to a client advisor and firm.
Emotion and Customers Financial Decisions are Highly Connected
As cited in the FCA’s RDR finalized guidance (2012), client profiling using automated tools must be reviewed carefully by a firm and enhanced where necessary to make a complete picture.
EmotionAdvisor is a set of skills we are developing for banks and insurers, asset and wealth managers to enhance their client profiles with behavioural finance relevant information in order to make sharper product, offering or advisory recommendations.
Our core belief is the better you know your client, the more accurate your recommendations and the more you can prove you aligned to their best interests.
EmotionAdvisor may be just what you're looking for to help plug that important gap between static MiFid profiling and true behavioural finance inputs.
About Us...
We're not your average early stage start-up talking about AI and machine learning. I've been CEO of nViso since 2009, we have 30 employees and are a spin-off and are still based out of EPFL (often called the MIT of Europe) and are an official partner with IBM Watson for machine learning and data analysis techniques development. We are now launching our fourth major client with our mainline Financial Services SaaS called EmotionAdvisor.
I also head up the European Union’s front-end offense as organizer of BONSEYES, the EU open marketplace for AI which has a budget of double-digit millions to build our Europe’s offensive capabilities and use cases across industry verticals such as Finance, Automotive, Consumer Retail and IoT among others. Our team is largely made up of PhDs and business people who know how to build and shape a product set.
Want to Learn More about AI and Finance
FCA’s RDR Finalised Guidance on Independent and restricted advice
FCA’s FARM final report
EmotionAdvisor prospectus on nViso website
Paul Ekman history
Are you a Head of Strategy, Digital, Innovation or Products & Services at a bank, insurer, asset or wealth manager, or a FinTech with a B2C offering? Send me a DM and I'd be happy to walk you through in more detail how our product set works and the results we've been able to achieve on behalf of our clients to date.
Please comment below with a question or opinion and I look forwards to answering and providing additional insights to all queries.
Tim
83 9 Comments
LikeCommentShare
LinkedIn User

LinkedIn User

Ben Robinson interesting read!
Like

Reply
6y

Richard Sheroff
Richard Sheroff
We are only scratching the surface. The culmination of real time data analytics on truly "big data" with predictive abilities is the disruptive technology that is far past due. It requires a new computing paradigm since the fundamental algorithms involved in handling sparse data is not suitable for Von Neumann architecture with their macho flops running at. 5% peak.
Like

Reply
2 Likes
6y

Tim Llewellynn
Tim Llewellynn
Completely agree we haven't even got to a stage where we have "fit-for-purpose" hardware for AI and data-driven software - we are still running around with legacy hardware repurposed. Once a stream of new hardware solutions can into the mainstream there will major disruption and capabilities available that weren't imaginable before.
Like

Reply
1 Like
6y

LinkedIn User

LinkedIn User

Patrick Barnert nViso.... and interesting about the FCA Sandbox...
Like

Reply
6y

Priyanka Pawar
Priyanka Pawar
Congrats Tim!
Like

Reply
2 Likes
6y

Igor Shaposhnikov
Igor Shaposhnikov
Very good, Tim! Congratulations!
Like

Reply
3 Likes
6y

🎤 Denyse Drummond-Dunn
🎤 Denyse Drummond-Dunn
Great news. Perhaps now UBS will realise what they missed last year?!
Like

Reply
3 Likes
6y

LinkedIn User

LinkedIn User

Congrats Tim & team, this is a huge step to learning the Finance vertical - he who learns most fastest wins! 🤜🏽
Like

Reply
3 Likes
6y

Michael O'Sullivan'Sullivan
Michael O'Sullivan
Kevin Knull, CFP® Anthony Clark-Jones Hester Turton Andreas Bolli Christian H. David Bruno Martin Weis
Like

Reply
2 Likes
Hopefully you have read the above as this is what makes it interesting:

Richard Sheroff Photo

  • Created: 11/24/2017 by Qube Analyst
  • Last Edited: 11/24/2017 by Qube Analyst

" data-metric=".object-stats" style="color: rgb(34, 34, 34); cursor: pointer; font-size: 20.799999237060547px;"> Richard Sheroff
Vice President of Sales and Business Development at Emu Technology
Location: Greater Atlanta Area, GA
ADD TO MY LISTS
Richard Sheroff has over 25 years of experience in the computer industry. He was a co-founder and/or executive at several companies including Data General, Cambridge Robotics, MasPar, Convex, Zantaz and OpenText.
Richard and his colleagues were key in developing and deploying the world’s first commercial applications using large-scale parallel processing systems. First, was the interceptor (GBR- Ground Based RADAR) of the Patriot Missile Defense System partnering with Raytheon Corporation. Shortly thereafter, he teamed with Lockheed Martin in the design and successful implementation of the FBI’s IAFIS(Integrated Automated Fingerprinting Identification System) using 128-way parallel computer systems.
Richard has a BS Degree in Engineering from Cornell University

My opinion only DYOR
FF

AKIDA BALLISTA
 
  • Like
  • Fire
  • Love
Reactions: 15 users
Hopefully you have read the above as this is what makes it interesting:

Richard Sheroff Photo

  • Created: 11/24/2017 by Qube Analyst
  • Last Edited: 11/24/2017 by Qube Analyst

" data-metric=".object-stats" style="color: rgb(34, 34, 34); cursor: pointer; font-size: 20.799999237060547px;"> Richard Sheroff
Vice President of Sales and Business Development at Emu Technology
Location: Greater Atlanta Area, GA
ADD TO MY LISTS
Richard Sheroff has over 25 years of experience in the computer industry. He was a co-founder and/or executive at several companies including Data General, Cambridge Robotics, MasPar, Convex, Zantaz and OpenText.
Richard and his colleagues were key in developing and deploying the world’s first commercial applications using large-scale parallel processing systems. First, was the interceptor (GBR- Ground Based RADAR) of the Patriot Missile Defense System partnering with Raytheon Corporation. Shortly thereafter, he teamed with Lockheed Martin in the design and successful implementation of the FBI’s IAFIS(Integrated Automated Fingerprinting Identification System) using 128-way parallel computer systems.
Richard has a BS Degree in Engineering from Cornell University

My opinion only DYOR
FF

AKIDA BALLISTA
So if you have read both then perhaps CHATGpt has some inside information on Raytheon and Lockheed Martin and is not just making it up after all we have a plethora of dots pointing to both companies.

My speculation and opinion only DYOR
FF

AKIDA BALLISTA
 
  • Like
  • Fire
  • Love
Reactions: 21 users
Ok quiz time for non subscribers.
Correct answer gets 1 month subscription to TseX
Name 🥋 Bruce Lee's two favorite beverages.
 
  • Like
  • Haha
Reactions: 5 users
Couple of articles just had a read of.

Not sure if posted prev but anyway and whilst both from Oct, pretty good read imo.

One is about Socionext and given what we know currently, helps broaden the picture somewhat I feel.

The other is by a Strategic Marketing Mgr at Synopsys on IP and AI SoCs and isn't actually a product pitch per se.

Also an interesting read given our IP strategy these days.



SoCs for Electric and Autonomous Car Makers​

By Rick Fiorenzi | Monday, October 17, 2022

Whether ADAS applications will be needed to be successful in the future is not a question of “if” but “when”.

Next-generation autonomous driving platforms require higher levels of performance to make split-second decisions. A vehicle needs to comprehend, translate, and accurately perceive its surrounding environment and react to changes as fastest and safest means possible. Future ADAS and Autonomous implementations (Figure 1) require higher performance, real-time edge computing with AI processing capabilities, along with high bandwidth interfaces to a host of high-resolution sensors, including radar, LiDAR, and camera.

Improving the “seeing/vision” capabilities of advanced driver assistance systems (ADAS) is extending beyond cameras and LiDARs by incorporating smart sensors to handle complex driving scenarios that the auto industry coins Level 4, or “high” automation.
Figure 1: ADAS and autonomous driving require multiple sensors
Figure 1: ADAS and autonomous driving require multiple sensors

Custom SoC Versus OTS (Off-the-Shelve) Solutions

There are many factors to consider when auto OEMs decide whether to go with a customized SoC or “off-the-shelf” products. Some questions include whether the car is intended for a broad-based market with little differentiation from others, which key IP should be brought in-house versus relying on external providers, and what are the trade-offs in terms of power, performance, size and costs.
In the end, automotive vendors must decide what is most suitable to them, based on the options available. The diagram in Figure 2 lists some key deciding factors between custom SoC versus standard of-the-shelf product.

Figure 2: Off-the-Shelf vs Custom SoC solutions
Figure 2: Off-the-Shelf vs Custom SoC solutions

Benefits of Custom SoC Solutions

The reasons why custom SoC solutions might be the optimal choice when designing your next automotive application are listed below:
  • Custom SoCs are built upon multi-purpose IP blocks that are specifically architected and integrated to achieve the intended functions as required by the application use case. They are specifically designed to achieve optimal levels of performance and efficiency while reducing size and overall BOM costs
  • Standard OTS or ‘off-the-shelf’ silicon solutions are intended to appeal to a broader based market. As such, OTS silicon devices support functions which are not fully optimized or in some cases even utilized. This often results in a larger footprint, unnecessary power consumption, and performance inefficiency
  • In addition, custom SoC solutions provide OEMs and Tier-1s, the opportunity for complete ownership of key differentiating technologies, in the areas of ADAS and autonomy. Proprietary chips offer companies an opportunity to develop in-depth knowledge and in-house expertise, enabling greater control of future designs and products. implementations.
Figure 3 summarizes the main benefits of a custom SoC solution.
Figure 3: Key benefits of custom SoC solution
Figure 3: Key benefits of custom SoC solution

Supply Chain – A Major Factor for Consideration

Supply chain interruptions are a primary concern for auto OEMs today. Unanticipated ‘Black Swan’ events can disrupt the flow of supply such as natural disasters, international border blockade, government sanctions, economic downturns, geo-political and social unrest. Supply of materials is never guaranteed, however, the odds for continued production are more favorable when a company doesn’t have to compete with several others to obtain the same product.

More and more car manufacturers are realizing that general purpose chips offer features that cater to multiple customers, limiting their product competitiveness and restricting them to the suppliers’ timelines and delivery schedule.

Why Custom SoCs?

Every now and again a new company comes along that alters the familiar and established business model. Similar to Netflix disrupting the video rental industry, Tesla is a company that has shattered the traditional automotive business model with its early launch of the autonomous technology, direct purchasing program, unconventional automotive designs with large interior displays, and constructions of battery giga-factories. Tesla’s success is driving traditional automakers to rapidly adapt their playbooks.

Unlike other automakers, Tesla has recognized the importance of OTA (Over-the-Air) software updates early on for adding certain features and to improve safety and performance. The company had developed its own chips since 2016. In 2019 at Autonomy Day, Tesla unveiled the Hardware 3.0, a chip that Elon Musk claimed was “objectively the best chip in the world.” Earlier in 2022, it was rumored that Tesla was working with Samsung to develop a new 5nm semiconductor chip that would assist with its autonomous driving software.

Tesla, along with other tech giants like Google, Amazon, Cruise, and many others, have decided to develop their own proprietary autonomous driving platforms.

Tesla was also one of the earliest companies to implement autonomous driving technologies with the launch of its 1st generation autopilot in 2016. In order to build a self-driving car, car makers need a combination of hardware, software, and data working together to train the deep neural networks that allow the vehicle to perceive and move safely through its environment. The deep neural networks are the artificial intelligence engine. It includes a series of algorithms that are specifically designed to mimic the way neurons in the human brain work. They are the backbone of deep learning. The evolution of Tesla’s autopilot and full self-driving features forced carmakers to take a closer look at the use of cameras and ultrasonic sensors.

Tesla acquires tremendous amount of data from its nearly two million autopilot-enabled vehicles each equipped with 8-camera arrays to generate data that’s then used to train the neural networks to detect objects, segment images, measure depth in real time. The car’s onboard supercomputer FSD (Full-Self-Driving) chip runs the deep neural networks and analyze the computer vision inputs from the cameras in real time to understand, make decisions, and move the car through the environment.

As AI becomes more important and costly to deploy, other companies that are heavily invested in the technology—including Google, Amazon, and Microsoft—are also designing their own chips.

The bottom line is that in addition to being a crucial component toward full-self-driving capabilities, autonomous vehicle OEMs aim to develop proprietary chips to differentiate themselves from their competition.

Socionext’s SoC solutions

Creating a proprietary chip requires a complex, highly structured framework with complete support system for addressing each phase of the development process. Most companies seeking to design their own chips do not have the full capabilities in-house. They require assistance from highly specialized companies with extensive engineering skills, know-how and experience to support full-on system-level SoC design, development, and implementation.

A company such as Socionext (Figure 4) offers the right combination of IPs along with the necessary design expertise and support to implement large scale, fully customizable automotive SoC solutions, to meet the most demanding and rigorous automotive application performance requirements.

Figure 4: Socionext Custom SoC Design and Integration
Figure 4: Socionext Custom SoC Design and Integration

Additionally, Socionext has an established an in-house automotive design team to help to facilitate the early development and large-scale production of high-performance SoCs for automotive applications. As a leading “Solution SoC” provider, Socionext is committed to using leading-edge technologies, such as 5nm and 7nm processes, to produce automotive-grade SoCs that ensure functional safety while accelerating software development and system verification.


Beyond Silicon: Nurturing AI SoCs with IP​

By Ron Lowman | October 20, 2022


SoC designers face a variety of challenges when balancing specific computing requirements with the implementation of deep learning capabilities.

While artificial intelligence (AI) is not a new technology, it wasn’t until 2015 that a steep hike in new investments made advances in processor technology and AI algorithms possible. Beyond simply seeing it as an academic discipline, the world began to take notice of this scientifically proven technology that could exceed human capabilities. Driving this new generation of investment is the evolution of AI in mainframes to embedded applications at the edge, leading to a distinct shift in hardware requirements for memory, processing, and connectivity in AI systems-on-chip (SoCs).

In the past ten years, AI has emerged to enable safer automated transportation, design home assistants catered to individual user specifications, and create more interactive entertainment. To provide these useful functions, applications have increasingly become dependent on deep-learning neural networks. Compute-intense methodologies and all-encompassing chip designs power deep learning and machine learning to meet the demand for smart everything. The on-chip silicon technology must be capable of delivering advanced math functions, fueling unprecedented real-time applications such as facial recognition, object and voice identification, and more.

Defining AI

There are three fundamental building blocks that most AI applications follow: perception, decision-making, and response. Using these three building blocks, AI has the capacity to recognize its environment, use input from the environment to inform itself and make a decision, and then, of course, act on it. The technology can be broken up into two broad categories: “weak AI or narrow AI” and “strong AI or artificial general intelligence.” Weak AI is the ability to solve specific tasks, while strong AI includes the machine’s capability to resolve a problem when faced with a never-before-seen task. Weak AI makes up most of the current market, while strong AI is considered a forward-looking goal the industry hopes to employ within the next few years. While both categories will yield exciting innovations to the AI SoC industry, strong AI opens up a plethora of new applications.

Machine vision applications are a driving catalyst for new investment in AI in the semiconductor market. An advantage of machine vision applications that utilize neural network technology is increased accuracy. Deep learning algorithms such as convolutional neural networks (CNNs) have become the AI bread and butter within SoCs. Deep learning is primarily employed to solve complex problems, such as providing answers in a chatbot or a recommender function in your video streaming app. However, AI has wider capabilities that are now being leveraged by everyday citizens.

The evolution of process technology, microprocessors, and AI algorithms has led to the deployment of AI in embedded applications at the edge. To make AI more user-friendly for broader markets such as automotive, data centers, and the internet of things (IoT), a variety of specific tasks have been implemented, including facial detection, natural language understanding, and more. But looking ahead, edge computing — and more specifically, the on-device AI category — is driving the fastest growth and bringing the most hardware challenges in adding AI capabilities to traditional application processors.

While a large chunk of the industry enables AI accelerators in the cloud, another emerging category is mobile AI. The AI capability of mobile processors has increased from single-digit TOPS to well over 20 TOPS in the past few years. These performance-per-watt improvements show no signs of slowing down, and as the industry steadily nears the point of data collection in edge servers and plug-in accelerator cards, optimization continues to be the top design requirement for edge device accelerators. Due to the limited computing power and memory that some edge device accelerators possess, the algorithms are compressed to meet power and performance requirements, all while preserving the desired accuracy level. As a result, designers have had no choice but to increase the level of compute and memory. Not only are the algorithms compressed, but given the huge amount of data being generated, there is only capacity for the algorithms to focus on designated areas of interest.

While the appetite for AI steadily increases, there has been a noticeable uptick in non-traditional semiconductor companies investing in technology to solidify their place among the innovative ranks. Many companies are currently developing their own ASICs to support their individual AI software and business requirements. Implementing AI in SoC design does not come without many challenges.

The AI SoC Obstacle Course

The overarching obstacle for AI integration into SoCs is that design modifications to support deep learning architectures have a sweeping impact on AI SoC designs in both specialized and general-purpose chips. This is where IP comes into play; the choice and configuration of IP can determine the final capabilities of the AI SoC. For example, integrating custom processors can accelerate the extensive math that AI applications require.

SoCs designers face a variety of other challenges when balancing specific computing requirements with the implementation of deep learning capabilities:
  • Data connectivity: CMOS image sensors for vision and deep learning AI accelerators are key examples of the real-time data connectivity needed between sensors. Once compressed and trained, an AI model will be prepared to carry out tasks through a variety of interface IP solutions.
  • Security: As security breaches become more common in both personal and business virtual environments, AI offers a unique challenge in securing important data. Protecting AI systems must be a top priority for ensuring user safety and privacy as well as for business investments.
  • Memory performance: Advanced AI models require high-performance memory that supports efficient architectures for different memory constraints, including bandwidth, capacity, and cache coherency.
  • Specialized processing: To manage massive and changing compute requirements for machine and deep learning tasks, designers are implementing specialized processing functions. With the addition of neural network abilities, SoCs must be able to manage both heterogeneous and massively parallel computations.

Charting AI’s Future Path for SoCs

To sort through trillions of bytes of data and power tomorrow’s innovations, designers are developing chips that can meet the advanced and ever-evolving computational demand. Top-quality IP is one key to success, as it allows for optimizations to create more effective AI SoC architectures.

This SoC design process is innately arduous as decades of expertise, advanced simulation, and prototyping solutions are necessary to optimize, test, and benchmark the overall performance. The ability to “nurture” the design through necessary customizations will be the ultimate test in determining the SoC’s viability in the market.

Machine learning and deep learning are on a strong innovation path. It’s safe to anticipate that the AI market will be driven by demand for faster processing and computations, increased intelligence at the edge, and, of course, automating more functions. Specialized IP solutions such as new processing, memory, and connectivity architectures will be the catalyst for the next generation of designs that enhance human productivity.
 
  • Like
  • Fire
  • Love
Reactions: 19 users
Top Bottom