In the spider web that is from time to time visible I currently have two crossing points aligning that may be real or imagined.
In 2019 Peter van der Made stated that 100 AKD1000 could undertake all of the computing for an unconnected autonomous vehicle.
Early 2020 the then CEO Mr. Dinardo went to great lengths in a webinar to hose down the idea that AKD1000 would be used in this way. He stated that Peter van der Made gets carried away, that 100 AKD1000 could do this but this was not the focus so stop talking about it and asking questions was the point.
At the time I thought well that is fair enough he wants to focus on the Edge but the idea that 100 AKD1000 could power an unconnected AV is a pretty good statement or example of just how powerful and revolutionary it is and after all your making it so 64 AKD1000 chips can be ganged together.
Anyway as I said points of connection real or imagined that might fit with Mercedes.
My opinion only DYOR
FF
AKIDA BALLISTA
Hi FF,On the theme of Renesas and implementing AKIDA technology in MCU’s I have been excited by this prospect since Peter van der Made and Anil Mankar separately disclosed this was where Renesas was heading. I have lacked the depth of technical knowledge to bring a proper explanation of why this is so exciting. Just now on the Renesas thread I found the following.
This article is not about AKIDA technology but It identifies the opportunity to be had in making trillions of MCUs smart and offering a clever but convoluted old school solution.
If you had a calculator that could do trillions you could work out what 1 trillion times a 2 cent royalty would be for IP to make an MCU smart with every cent being profit to the owner of the IP:
Date 02/18/20
What is tinyML?
What is tinyML technology?
“We see a new world with trillions of intelligent devices enabled by tinyML technologies that sense, analyze, and autonomously act together to create a healthier and more sustainable environment for all.”
This is a quote by Evgeni Gousev, senior director at Qualcomm and co-chair of the tinyML Foundation, in his opening remarks at a recent conference.
Machine learning is a subset of artificial intelligence. tinyML aka tiny ml is an abbreviation for tiny machine learning and means that machine learning algorithms are processed locally on embedded devices.
TinyML is very similar with Edge AI, but tinyML takes Edge AI one step further, making it possible to run machine learning models on the smallest microcontrollers (MCU’s). Learn more about Edge AI here.
What is a microcontroller?
![]()
Embedded systems normally include a microcontroller. A microcontroller is a compact integrated circuit designed to govern a specific operation in an embedded system. A typical microcontroller includes a processor, memory and input/output (I/O) peripherals on a single chip.
Microcontrollers are cheap, with average sales prices reaching under $0.50, and they’re everywhere, embedded in consumer and industrial devices. At the same time, they don’t have the resources found in generic computing devices. Most of them don’t have an operating system.
They have a small CPU, are limited to a few hundred kilobytes of low-power memory (SRAM) and a few megabytes of storage, and don’t have any networking gear. They mostly don’t have a mains electricity source and must run on cell and coin batteries for years.
What are the advantages with tinyML?
There are a number of advantages with running tinyML machine learning models on embedded devices.
Low Latency: Since the machine learning model runs on the edge, the data doesn't have to be sent to a server to run inference. This reduces the latency of the output.
Low Power Consumption: Microcontrollers are ultra low power which means that they consume very little power. This enables them to run without being charged for a really long time.
Low Bandwidth: As the data doesn’t have to be sent to the server constantly, less internet bandwidth is used.
Privacy: Since the machine learning model is running on the edge, the data is not stored in the cloud.
What are the challenges with tinyML?
Deep learning models require a lot of memory and consumes a lot of power. There have been multiple efforts to shrink deep machine learning models to a size that fits on tiny devices and embedded systems. Most of these efforts are focused on reducing the number of parameters in the deep learning model. For example, “pruning,” a popular class of optimization algorithms, compress neural networks by removing the parameters that are less significant in the model’s output.
The problem with pruning methods is that they don’t address the memory bottleneck of the neural networks. Standard implementations of embedded machine learning require an entire network layer and activation maps to be loaded into memory. Unfortunately, classic optimization methods don’t make any big changes to the early layers of the network, especially in convolutional networks.
What is quantization?
Quantization is a branch of computer science and data science, and has to do with the actual implementation of the neural network on a digital computer, eg tiny devices. Conceptually we can think of it as approximating a continuous function with a discrete one.
Depending on the bit width of chosen integers (64, 32, 16 or 8 bits) and the implementation this can be done with more or less quantization errors. All modern PCs, smartphones, tablets, and more powerful microcontrollers (MCUs) for embedded systems have a so-called floating-point unit or an FPU.
This is a piece of hardware next to or is integrated with the main processor, with the purpose to make floating-point operations fast. But for the tiniest MCUs there are no FPUs and instead, one must resort to either of two options: Transform the data to integer numbers and perform all the calculations with integer arithmetic or perform the floating-point calculations in software.
The latter approach takes considerably more processor time, so go get a good performance on these chips (e.g., ARM’s M0-M3 cores), the former approach is the preferred one. If memory is sparse, which usually is the case on these devices, one can specify the integers to be 16 or 8-bit, thereby reducing the RAM and Flash memory used by the program to half, or a quarter.
What is tinyML software?
tinyML software are typically ultra low power tinyML applications that run on a physical hardware device. There are a large number of machine learning algorithms that are used, but the trend is that deep learning is becoming more and more popular. People that develop tinyML applications are normally data scientists, machine learning engineers or embedded developers. Normally the tinyML models are developed and trained in a cloud system. When the tinyML application runs on the hardware device, the tinyML model can then understand what it was trained for. This is called inference.
What is tinyML hardware?
tinyML can run on a range of different hardware platforms from Arm Cortex M-series processors to advanced neural processing devices. Deep learning normally requires more powerful hardware platforms than other types of machine learning algorithms. IoT devices are an example of tinyML hardware devices. Many people are using an Arduino board to demonstrate machine learning applications.
What is a tinyML framework?
A tinyML framework is a software platform that makes it easier for developers to develop tinyML applications. Tensorflow Lite for microcontrollers is one of the most popular embedded machine learning frameworks.
What is a tinyML development platform?
A tinyML development platform is an end-to-end software platform, where users can develop tinyML applications. They start with collecting data, they can use AutoML to develop the machine learning models and eventually they can deploy the machine learning model on a tiny device. The main benefit with a tinyML platform is that it reduces time-to-market and lower the costs for the developer.
What are some examples of tinyML use cases?
The benefits of tinyML are huge, and the number of use cases for tinyML technology are almost unlimited. Popular use cases include Computer vision, visual wake words, keyword spotters, predictive maintenance, gesture recognition, maintenance of industrial machines and many more.
Imagimob in tinyML
Imagimob offers Imagimob AI which is a tinyML development platform that covers the end-to-end process from data collection to deploying AI models on a microcontroller board”
My opinion only DYOR
FF
AKIDA BALLISTA
Seems to be the way to do things in Canberra.Just might be worthwhile going to jail in ACT for a stretch:
Canberra chef and former owner of Courgette Restaurant James Mussillon pleads guilty to perjury and money laundering
https://www.msn.com/en-au/news/aust...and-money-laundering/ar-AAVqRdi?ocid=msedgntp
Likewise Chappy, it stands out imo. Haven't heard of Untether before, competitor ???
Someone had to............I wasn’t going to buy any more BRN shares this week, but couldn’t help myself at these prices. I wonder what the share price will be when revenue starts coming in the 2nd half of the year, surely almost double of what it is now.
Sorry in my excitement I forgot that you might not have read Fullmoonfever's post under breaking news but this is the link he posted:THIS IS HUGE NEWS - WHY WAS I NOT TOLD - BECAUSE I AM JUST A RETAIL SHAREHOLDER - THIS IS ANOTHER PILLAR SUPPORTING
MY FUTURE GENERATIONAL WEALTH TRAJECTORY.
"AKIDA NET
Recently, we have developed a replacement for the popular MobileNet v1 model used as a backbone in many applications that we call AkidaNet. AkidaNet’s architecture utilizes the Akida hardware more efficiently. Some of our preliminary results are shown below for object classification, face recognition, and face detection. In many cases, switching from MobileNet v1 to AkidaNet results in a slight increase in speed and accuracy accompanied by a 15% to 30% decrease in power usage."
How mind blowing important is a 30% decrease in already ludicrously low power usage at the Edge.
I think we need to start a list of those who want to purchase an EQXX.
My opinion only DYOR
FF
AKIDA BALLISTA
Same, just grabbed another 5k worth at .98. I maintain that anything under $1.00 will look super cheap in 6 months time.I wasn’t going to buy any more BRN shares this week, but couldn’t help myself at these prices. I wonder what the share price will be when revenue starts coming in the 2nd half of the year, surely almost double of what it is now.
There was probably large readjustment in strategic planning when large countries ie. China, Euro zone etc started saying that there were moving to a high percentage of EV’s by 2030 etc which is a very short timeframe to fully change over. The mass dollar signs start appearing for the mass changeover that is required....and of course Akida allowed them to effeciently enact the strategic change of thoughtThat explains EV but it does not explain EQXX leaping from nowhere onto the drawing board from a position where Mercedes were saying we will keep doing our ICE and building a few token EV models.
My opinion only DYOR
FF
AKIDA BALLISTA
AKIDA NETSorry in my excitement I forgot that you might not have read Fullmoonfever's post under breaking news but this is the link he posted:
Whhhhaaat?? USD$500 per share?I've always said that I will never sell my BRN shares, sorry but change of plans.
I will now sell only one share when the share price reaches US$500, buy a bottle of champagne for the same value, drink the bottle on my own then share it over the grave of a BRN shorter.
AND THIS LITTLE BEAUTY:AKIDA NET
Akida Net 5 doing MELANOMA classification with 98.31% accuracy.
This is a brand new talent not disclosed previously.
My opinion only DYOR
FF
AKIDA BALLISTA
Whhhhaaat?? USD$500 per share?
I think you gotta hold another 5 years from now on........ long way
yeah I know, however revenge has no time limit. I will dance on their graves until then.Whhhhaaat?? USD$500 per share?
I think you gotta hold another 5 years from now on........ long way
Todays drop in SP is from the 2,900,000 Shorts taken out on Weds this week. Prior to this short positions had dropped significantly leading into Tuesday.
T-Sex? Sounds like a fun evening activity post-dinner!It makes sense JK. Afterall, where else would all the sextillionaires hang-out with eachother, other than on TSEX?
Could be relevant................On the theme of Renesas and implementing AKIDA technology in MCU’s I have been excited by this prospect since Peter van der Made and Anil Mankar separately disclosed this was where Renesas was heading. I have lacked the depth of technical knowledge to bring a proper explanation of why this is so exciting. Just now on the Renesas thread I found the following.
This article is not about AKIDA technology but It identifies the opportunity to be had in making trillions of MCUs smart and offering a clever but convoluted old school solution.
If you had a calculator that could do trillions you could work out what 1 trillion times a 2 cent royalty would be for IP to make an MCU smart with every cent being profit to the owner of the IP:
Date 02/18/20
What is tinyML?
What is tinyML technology?
“We see a new world with trillions of intelligent devices enabled by tinyML technologies that sense, analyze, and autonomously act together to create a healthier and more sustainable environment for all.”
This is a quote by Evgeni Gousev, senior director at Qualcomm and co-chair of the tinyML Foundation, in his opening remarks at a recent conference.
Machine learning is a subset of artificial intelligence. tinyML aka tiny ml is an abbreviation for tiny machine learning and means that machine learning algorithms are processed locally on embedded devices.
TinyML is very similar with Edge AI, but tinyML takes Edge AI one step further, making it possible to run machine learning models on the smallest microcontrollers (MCU’s). Learn more about Edge AI here.
What is a microcontroller?
![]()
Embedded systems normally include a microcontroller. A microcontroller is a compact integrated circuit designed to govern a specific operation in an embedded system. A typical microcontroller includes a processor, memory and input/output (I/O) peripherals on a single chip.
Microcontrollers are cheap, with average sales prices reaching under $0.50, and they’re everywhere, embedded in consumer and industrial devices. At the same time, they don’t have the resources found in generic computing devices. Most of them don’t have an operating system.
They have a small CPU, are limited to a few hundred kilobytes of low-power memory (SRAM) and a few megabytes of storage, and don’t have any networking gear. They mostly don’t have a mains electricity source and must run on cell and coin batteries for years.
What are the advantages with tinyML?
There are a number of advantages with running tinyML machine learning models on embedded devices.
Low Latency: Since the machine learning model runs on the edge, the data doesn't have to be sent to a server to run inference. This reduces the latency of the output.
Low Power Consumption: Microcontrollers are ultra low power which means that they consume very little power. This enables them to run without being charged for a really long time.
Low Bandwidth: As the data doesn’t have to be sent to the server constantly, less internet bandwidth is used.
Privacy: Since the machine learning model is running on the edge, the data is not stored in the cloud.
What are the challenges with tinyML?
Deep learning models require a lot of memory and consumes a lot of power. There have been multiple efforts to shrink deep machine learning models to a size that fits on tiny devices and embedded systems. Most of these efforts are focused on reducing the number of parameters in the deep learning model. For example, “pruning,” a popular class of optimization algorithms, compress neural networks by removing the parameters that are less significant in the model’s output.
The problem with pruning methods is that they don’t address the memory bottleneck of the neural networks. Standard implementations of embedded machine learning require an entire network layer and activation maps to be loaded into memory. Unfortunately, classic optimization methods don’t make any big changes to the early layers of the network, especially in convolutional networks.
What is quantization?
Quantization is a branch of computer science and data science, and has to do with the actual implementation of the neural network on a digital computer, eg tiny devices. Conceptually we can think of it as approximating a continuous function with a discrete one.
Depending on the bit width of chosen integers (64, 32, 16 or 8 bits) and the implementation this can be done with more or less quantization errors. All modern PCs, smartphones, tablets, and more powerful microcontrollers (MCUs) for embedded systems have a so-called floating-point unit or an FPU.
This is a piece of hardware next to or is integrated with the main processor, with the purpose to make floating-point operations fast. But for the tiniest MCUs there are no FPUs and instead, one must resort to either of two options: Transform the data to integer numbers and perform all the calculations with integer arithmetic or perform the floating-point calculations in software.
The latter approach takes considerably more processor time, so go get a good performance on these chips (e.g., ARM’s M0-M3 cores), the former approach is the preferred one. If memory is sparse, which usually is the case on these devices, one can specify the integers to be 16 or 8-bit, thereby reducing the RAM and Flash memory used by the program to half, or a quarter.
What is tinyML software?
tinyML software are typically ultra low power tinyML applications that run on a physical hardware device. There are a large number of machine learning algorithms that are used, but the trend is that deep learning is becoming more and more popular. People that develop tinyML applications are normally data scientists, machine learning engineers or embedded developers. Normally the tinyML models are developed and trained in a cloud system. When the tinyML application runs on the hardware device, the tinyML model can then understand what it was trained for. This is called inference.
What is tinyML hardware?
tinyML can run on a range of different hardware platforms from Arm Cortex M-series processors to advanced neural processing devices. Deep learning normally requires more powerful hardware platforms than other types of machine learning algorithms. IoT devices are an example of tinyML hardware devices. Many people are using an Arduino board to demonstrate machine learning applications.
What is a tinyML framework?
A tinyML framework is a software platform that makes it easier for developers to develop tinyML applications. Tensorflow Lite for microcontrollers is one of the most popular embedded machine learning frameworks.
What is a tinyML development platform?
A tinyML development platform is an end-to-end software platform, where users can develop tinyML applications. They start with collecting data, they can use AutoML to develop the machine learning models and eventually they can deploy the machine learning model on a tiny device. The main benefit with a tinyML platform is that it reduces time-to-market and lower the costs for the developer.
What are some examples of tinyML use cases?
The benefits of tinyML are huge, and the number of use cases for tinyML technology are almost unlimited. Popular use cases include Computer vision, visual wake words, keyword spotters, predictive maintenance, gesture recognition, maintenance of industrial machines and many more.
Imagimob in tinyML
Imagimob offers Imagimob AI which is a tinyML development platform that covers the end-to-end process from data collection to deploying AI models on a microcontroller board”
My opinion only DYOR
FF
AKIDA BALLISTA