BRN Discussion Ongoing

manny100

Regular
Love this part, at first I thought..
"Yeah, a Western Australian University engagement, is really no big surprise"..

"Today UWA is ranked in the world’s top 100 universities and number one in Western Australia. As one of Australia’s leading research-intensive universities UWA operates more than 40 intensive research centers and 22 schools, in addition to having a broad range of successful industry partnerships. The University is a member of the internationally recognized Australian Group of Eight universities and a foundation member of the Matariki Network of high-quality, research-intensive universities with a particular focus on student experience"

Do people realise yet, how BIG this Company is looking to be in the Future?!!

But when, when, when, will we see some Big Companies, put their money on the table?

This year is certainly looking to be transformative and I'm expecting an announcement of a major IP deal, this week for starters!

If we don't get it, I'm going to chuck a major wobbly!

C'mon, let's all hold hands in cyberspace and sing Kum Ba Yah together and maybe we can make this happen!
Microsoft in its early days took on Teriary Educators as partners to ensure graduate awareness.
Today they have an enormous program which includes high schools etc.
It's all about furthering the Brand and awareness. BRN are really making advances with some Key Educational Institutions on board.
It's all starting to come together for BRN thanks to all sorts of strategies put together by Sean and his team.
 
  • Like
  • Fire
  • Love
Reactions: 57 users

Leevon

Member
Hi, @Esq.111
Could you or someone else give a explanation as to why BrainChip shares
are going down. With all the Companies that now seem to be using AKIDA and
all the Great reviews they seem to be getting, and still the price is going down.
I just cannot understand it. And please do not tell me that people are waiting for REVENUE.
People invest in the Stock Market for the reason of what the Future brings and not what the
present is, and everybody who have done their research, now know what the future will bring.
Yet the price keeps going down. (puzzled )🤔
Manipulation....hold tight... there's a rocket launching. We should all have learned over the last few years in clown world, that when we truly believe something/someone is 'right' and others are telling us different, trust your instincts! You are generally right!!
 
  • Like
Reactions: 2 users

Esq.111

Fascinatingly Intuitive.
Good Morning Chippers ,

Possibly shared before.

Watching the ABC Morning news, Wow.

No mention of us .... but this is right up our ally.

*Australian invention to detect power line faults... before Wild 🔥 starts.
*1 box every 5 km can detect a fault down to a 10 metre section of line.
* Uses radio frequency.
* Submission for funding is before the Gov pressently. Looking for $450 million AU in funding over 10 years.



Think someone should send this through to our management , thankyou in advance.

Regards,
Esq.
 

Attachments

  • 20240313_060624.jpg
    20240313_060624.jpg
    3.5 MB · Views: 85
  • 20240313_060759.jpg
    20240313_060759.jpg
    5.5 MB · Views: 81
Last edited:
  • Like
  • Fire
  • Love
Reactions: 36 users

cosors

👀
I wish you a good start in the day!
Screenshot_2024-03-12-21-06-17-67_40deb401b9ffe8e1df2f1cc5ba480b12.jpg

 
Last edited:
  • Like
  • Haha
  • Love
Reactions: 16 users

TECH

Regular

View attachment 58928


I received many great questions from the community in response to my recent post on neuromorphic computing, so I’ll jump right in and answer a few.

How does a more powerful processor increase energy efficiency?

#AI is already used in advanced driving assistance systems (ADAS) and infotainment, and the complex calculations are currently performed on traditional CPUs, GPUs and NPUs, which are not energy efficient. #Neuromorphiccomputing requires for the same tasks less energy. As the number of AI functions continue to increase, the increased computing efficiency of neuromorphic hardware will require less energy in comparison to legacy hardware. Reduced energy usage will also increase vehicle range and improve sustainability.

When can I experience neuromorphic computing?

Widespread use of neuromorphic computing will depend on many factors. The technology requires new programming and algorithms, so it will not immediately replace traditional processors. One key factor for us is that automotive-grade chips must meet extremely strict reliability requirements. However, we are already actively working to drive development and we are committed to being the first to use this technology in the automotive industry.

If you haven’t read the article yet, check it out here https://lnkd.in/epnUc5Sy. Be sure to ask more questions so we can keep the conversation going.



Neuromorphic computing? We’ve got that. 😎

Because it’s still nascent technology, I am frequently asked to describe #neuromorphic computing. It is a paradigm shift for how we perform computations in machine learning (#ML) and artificial intelligence (AI), which process massive amounts of data requiring tons of fast memory.

Currently available processor architecture separates data calculations from system memory, which is inefficient. The biological inspiration for neural networks is the human brain, where computing and memory are combined, and data processing uses neurons to communicate through electrical signals and chemical processes known as neurotransmitters.

In neuromorphic computing, those human neurons and synapses are modelled in circuits and communication is event-driven, with information coded in spikes, mimicking the processing fundamentals of the brain. Those spikes propagate through a Spiking Neural Network of artificial neurons and synapses to predict results. Information processing is measured by spike rate or spike time instead of the number of calculations. Thus, neuromorphic chips are more energy efficient and have lower latency than conventional CPUs and GPUs. That means much faster computation using considerably less power.

However, this change in data processing also requires new software algorithms specifically designed to work with neuromorphic hardware. Existing algorithms can only partially leverage the many benefits of neural technology. Thanks to Valerij, Alexander, Christina in the Innovations & Future Technology area and the rest of our team for tackling this huge project!

𝗔𝗽𝗽𝗹𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀

Neuromorphic computing reduces the power required for advanced AI computation, which is useful in applications where energy is limited, like electric vehicles. However, we still need automotive-grade chips with neuromorphic technology before this technology becomes common in cars.

We at Mercedes-Benz AG are currently working on novel algorithms that take advantage of neuromorphic computing to improve the energy efficiency and performance of our cars. Our primary goals are to extend vehicle range, make safety systems react faster, and increase the number of #AI functions possible. In 2020, we already joined the #Intel Neuromorphic Research Community and since then we are continuously expanding our collaborations with other research partners and universities to ensure our software and hardware solutions continue to lead the industry.

It's an exciting time to be in the world of automotive technology. Please share any questions and comments below.

Excellent post S G (y)

This explanation below is first-class !!

Despite not specifically mentioning us, I'd politely suggest if you still don't think that a world leader in Neuromorphic Computing, with two proof of concept chips AKD 1000 and AKD 1500 and proof of concept in IP only at this stage in AKD 2000 are still wrapped up with MB, well then
stick with your Nickel, Iron Ore and Lithium stocks....Technology is the future, I know it, you know it and we are donkey deep at the cutting-edge !

Regards...Texta :ROFLMAO:


In neuromorphic computing, those human neurons and synapses are modelled in circuits and communication is event-driven, with information coded in spikes, mimicking the processing fundamentals of the brain. Those spikes propagate through a Spiking Neural Network of artificial neurons and synapses to predict results. Information processing is measured by spike rate or spike time instead of the number of calculations. Thus, neuromorphic chips are more energy efficient and have lower latency than conventional CPUs and GPUs. That means much faster computation using considerably less power.
 
  • Like
  • Fire
  • Love
Reactions: 40 users
  • Like
  • Fire
  • Love
Reactions: 39 users

Damo4

Regular
Am I going mad or was there more pages in this thread before?
I thought I saw 4016 pages and then 4014 and now 4011.
 
  • Like
  • Haha
  • Thinking
Reactions: 13 users

IloveLamp

Top 20
1000014102.jpg
 
  • Like
  • Thinking
  • Wow
Reactions: 22 users

IloveLamp

Top 20
Am I going mad or was there more pages in this thread before?
I thought I saw 4016 pages and then 4014 and now 4011.
1000014103.gif
 
  • Haha
  • Like
Reactions: 7 users

Teach22

Regular
Excellent post S G (y)

This explanation below is first-class !!

Despite not specifically mentioning us, I'd politely suggest if you still don't think that a world leader in Neuromorphic Computing, with two proof of concept chips AKD 1000 and AKD 1500 and proof of concept in IP only at this stage in AKD 2000 are still wrapped up with MB, well then
stick with your Nickel, Iron Ore and Lithium stocks....Technology is the future, I know it, you know it and we are donkey deep at the cutting-edge !

Regards...Texta :ROFLMAO:


In neuromorphic computing, those human neurons and synapses are modelled in circuits and communication is event-driven, with information coded in spikes, mimicking the processing fundamentals of the brain. Those spikes propagate through a Spiking Neural Network of artificial neurons and synapses to predict results. Information processing is measured by spike rate or spike time instead of the number of calculations. Thus, neuromorphic chips are more energy efficient and have lower latency than conventional CPUs and GPUs. That means much faster computation using considerably less power.
Hey @TECH aka Texta.

How about providing some evidence of your previous post. (Below).

BrainChip’s Akida™ neuromorphic processor has been integrated into several microcontroller units (MCUs) and embedded systems-on-chip (SoCs). Here are some notable instances:

  1. SiFive Essential™ Processors with Akida-E:
  2. SiFive X280 Intelligence™ AI Dataflow Processors with Akida-S:
 
  • Like
  • Fire
Reactions: 9 users

IloveLamp

Top 20
Thank me for that.
Reason.
I'm going with Fact Finder back to hot crapper.
And when I go, so do my posts. (all 250+ of them)
1387.gif
 
  • Like
  • Haha
Reactions: 7 users

ndefries

Regular
Thank me for that.
Reason.
I'm going with Fact Finder back to hot crapper.
And when I go, so do my posts. (all 250+ of them)
this isn't the case - you can search for past comments and they are there.
 
  • Fire
Reactions: 2 users

TECH

Regular
Hey @TECH aka Texta.

How about providing some evidence of your previous post. (Below).

BrainChip’s Akida™ neuromorphic processor has been integrated into several microcontroller units (MCUs) and embedded systems-on-chip (SoCs). Here are some notable instances:

  1. SiFive Essential™ Processors with Akida-E:
  2. SiFive X280 Intelligence™ AI Dataflow Processors with Akida-S:

No comment to a number of posters...they weren't my words, the dark web conjures up all sorts of information, unless Brainchip and SiFive
make a joint statement it's purely speculation, do you believe everything you read over the internet, I honestly can't say it's fact or not.

Only thing I can say with any certainty is that our 1st quarter finishes in 13 business days, then we wait to see how the company has been performing when the 4C is released in late April 2024.

Have a good day...Tech.
 
  • Like
  • Fire
Reactions: 22 users

RobjHunt

Regular
I can feel it in my bones Esqo. Let’s go for round 3 🔔

I’m Panteneing 😉
 
  • Like
  • Love
  • Haha
Reactions: 8 users

Esq.111

Fascinatingly Intuitive.
Indeed...

 
  • Like
  • Fire
  • Haha
Reactions: 3 users
I/ONX Neuromorphic
I/ONX Neuromorphic
https://www.linkedin.com/company/i-onx/?miniCompanyUrn=urn:li:fs_miniCompany:96327740
Computational processes using traditional GPUs and CPUs in large data centers running complex data processing tasks significantly lack energy efficiency.

We are essentially at the fundamental limit of Artificial intelligence and machine Learning using traditional data processing technologies.

Enter neuromorphic computing. It has the potential to achieve High Performance Computing and yet consumes 1/1000th of the energy! Sound interesting?

Get in contact with one of our team members today to find out how we can transform your data center into an energy saving force by mimicking the brain's parallel processing capabilities!
View attachment 58939
Any ties to BRN does anyone know ?
 
  • Like
Reactions: 2 users

Bravo

If ARM was an arm, BRN would be its biceps💪!

View attachment 58928


I received many great questions from the community in response to my recent post on neuromorphic computing, so I’ll jump right in and answer a few.

How does a more powerful processor increase energy efficiency?

#AI is already used in advanced driving assistance systems (ADAS) and infotainment, and the complex calculations are currently performed on traditional CPUs, GPUs and NPUs, which are not energy efficient. #Neuromorphiccomputing requires for the same tasks less energy. As the number of AI functions continue to increase, the increased computing efficiency of neuromorphic hardware will require less energy in comparison to legacy hardware. Reduced energy usage will also increase vehicle range and improve sustainability.

When can I experience neuromorphic computing?

Widespread use of neuromorphic computing will depend on many factors. The technology requires new programming and algorithms, so it will not immediately replace traditional processors. One key factor for us is that automotive-grade chips must meet extremely strict reliability requirements. However, we are already actively working to drive development and we are committed to being the first to use this technology in the automotive industry.

If you haven’t read the article yet, check it out here https://lnkd.in/epnUc5Sy. Be sure to ask more questions so we can keep the conversation going.



Neuromorphic computing? We’ve got that. 😎

Because it’s still nascent technology, I am frequently asked to describe #neuromorphic computing. It is a paradigm shift for how we perform computations in machine learning (#ML) and artificial intelligence (AI), which process massive amounts of data requiring tons of fast memory.

Currently available processor architecture separates data calculations from system memory, which is inefficient. The biological inspiration for neural networks is the human brain, where computing and memory are combined, and data processing uses neurons to communicate through electrical signals and chemical processes known as neurotransmitters.

In neuromorphic computing, those human neurons and synapses are modelled in circuits and communication is event-driven, with information coded in spikes, mimicking the processing fundamentals of the brain. Those spikes propagate through a Spiking Neural Network of artificial neurons and synapses to predict results. Information processing is measured by spike rate or spike time instead of the number of calculations. Thus, neuromorphic chips are more energy efficient and have lower latency than conventional CPUs and GPUs. That means much faster computation using considerably less power.

However, this change in data processing also requires new software algorithms specifically designed to work with neuromorphic hardware. Existing algorithms can only partially leverage the many benefits of neural technology. Thanks to Valerij, Alexander, Christina in the Innovations & Future Technology area and the rest of our team for tackling this huge project!

𝗔𝗽𝗽𝗹𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀

Neuromorphic computing reduces the power required for advanced AI computation, which is useful in applications where energy is limited, like electric vehicles. However, we still need automotive-grade chips with neuromorphic technology before this technology becomes common in cars.

We at Mercedes-Benz AG are currently working on novel algorithms that take advantage of neuromorphic computing to improve the energy efficiency and performance of our cars. Our primary goals are to extend vehicle range, make safety systems react faster, and increase the number of #AI functions possible. In 2020, we already joined the #Intel Neuromorphic Research Community and since then we are continuously expanding our collaborations with other research partners and universities to ensure our software and hardware solutions continue to lead the industry.

It's an exciting time to be in the world of automotive technology. Please share any questions and comments below.


Some interesting likes!

Screenshot 2024-03-13 at 11.51.45 am.png




Screenshot 2024-03-13 at 11.47.52 am.png


Screenshot 2024-03-13 at 11.48.29 am.png

Screenshot 2024-03-13 at 11.48.55 am.png


Screenshot 2024-03-13 at 11.51.20 am.png
 
  • Like
  • Fire
  • Love
Reactions: 42 users

RobjHunt

Regular
Up till now, not much volume and holding our own. Bring in an uppercut Kenny.
 
  • Like
  • Haha
  • Fire
Reactions: 20 users

7für7

Top 20
  • Haha
  • Thinking
Reactions: 5 users
Top Bottom