BRN Discussion Ongoing

Gemmax

Regular
Aha! Penny's dropped. Remember when 8-bit weights were announced?

This change may be to accommodate 8-bit weights/activations.

The ALUs may be more efficient at handling the multi-bit "spikes" than the original Akida configuration.

I found this Sanskrit engraving on Eric von Dunnycan's tomb:

https://doc.brainchipinc.com/_modules/akida_models/imagenet/model_mobilenet.html
...
weight_quantization (int, optional): sets all weights in the model to have a particular quantization bitwidth except for the weights in the first layer.
Defaults to 0.

* '0' implements floating point 32-bit weights.
* '2' through '8' implements n-bit weights where n is from 2-8 bits.
activ_quantization (int, optional): sets all activations in the model to have a particular activation quantization bitwidth.
Defaults to 0.
...
input_scaling (tuple, optional): scale factor and offset to apply to
inputs. Defaults to (128, -1). Note that following Akida convention, the scale factor is an integer used as a divider
.
...
© Copyright 2022, BrainChip Holdings Ltd. All Rights Reserved.

If I recall correctly, it is only the weights that are 8-bit, and only for the purpose of compatibility with 3rd party model libraries.

If there are 8-bit weights and 4-bit activations, an 8*4 matrix would be used.
I was thinking the same thing Dodgy. 😆😆 Thank you for your contributions!
 
  • Haha
  • Like
Reactions: 17 users

TECH

Regular
Great watch ... Thanks MrNick (y):cool:(y)

Hey Guys,

Did you bother to check out the cars number plate ?

SEQ (Sequence) 1010 (binary) E (Edge)

Brainchips in there somewhere :ROFLMAO::ROFLMAO::ROFLMAO:
 
  • Like
  • Haha
  • Fire
Reactions: 24 users
Aha! Penny's dropped. Remember when 8-bit weights were announced?

This change may be to accommodate 8-bit weights/activations.

The ALUs may be more efficient at handling the multi-bit "spikes" than the original Akida configuration.

I found this Sanskrit engraving on Eric von Dunnycan's tomb:

https://doc.brainchipinc.com/_modules/akida_models/imagenet/model_mobilenet.html
...
weight_quantization (int, optional): sets all weights in the model to have a particular quantization bitwidth except for the weights in the first layer.
Defaults to 0.

* '0' implements floating point 32-bit weights.
* '2' through '8' implements n-bit weights where n is from 2-8 bits.
activ_quantization (int, optional): sets all activations in the model to have a particular activation quantization bitwidth.
Defaults to 0.
...
input_scaling (tuple, optional): scale factor and offset to apply to
inputs. Defaults to (128, -1). Note that following Akida convention, the scale factor is an integer used as a divider
.
...
© Copyright 2022, BrainChip Holdings Ltd. All Rights Reserved.

If I recall correctly, it is only the weights that are 8-bit, and only for the purpose of compatibility with 3rd party model libraries.

If there are 8-bit weights and 4-bit activations, an 8*4 matrix would be used.
U had me.gif
 
Last edited:
  • Haha
  • Like
Reactions: 14 users

buena suerte :-)

BOB Bank of Brainchip
Hey Guys,

Did you bother to check out the cars number plate ?

SEQ (Sequence) 1010 (binary) E (Edge)

Brainchips in there somewhere :ROFLMAO::ROFLMAO::ROFLMAO:
Nice work TECH ... 🔎🔎 🕵️‍♂️ ;)
 
  • Like
  • Haha
Reactions: 8 users
  • Like
  • Fire
  • Love
Reactions: 51 users

Learning

Learning to the Top 🕵‍♂️
  • Like
  • Fire
  • Love
Reactions: 29 users

TopCat

Regular
  • Like
  • Fire
Reactions: 12 users

IloveLamp

Top 20
  • Like
  • Fire
Reactions: 5 users

Jasonk

Regular
IPR Silicone IP Ltd, has anyone come across useful information? I was curious if IPR resided in a tech precinct.
After working at ARM Mauro Diamant started IPro Silicon while simultaneously working for Tiempo, Signature IP, and SiFive all of which are listed as IP vendor partners.

I feel I am missing something....

Update: I did come across an earnings guide for $5 million. Currency was not listed.

1688387977190.png


1688388023556.png
 
Last edited:
  • Thinking
  • Like
Reactions: 6 users
I know there has been some, shall we say conjecture recently on Nviso but this popped up in a Google search & dated week or so ago.

Pushing the neuromorphic mobile EVK.

Works for me if can get some traction :)





1920x768_Insights-Develop-1024x410.jpg


HUMAN BEHAVIOUR AI​

MOBILE PHONES​

NVISO’s Human Behaviour AI SDK allows application developers to build innovative solutions to transform our lives using AI on mobile phones. Understand people and their behavior to make autonomous devices safe, secure, and personalized for humans.

DOWNLOAD TRIAL EVK


AI-ENABLED​

HUMAN MACHINE INTERFACES​

NVISO’s Mobile SDK provides a robust real-time human behaviour AI API, NVISO Neuro Models™ interoperable and optimised for neuromorphic computing, the ability for flexible sensor integration and placement while delivering faster development cycles and time-to-value for software developers and integrators. It enables solutions that can sense, comprehend, and act upon human behavior including emotion recognition, gaze detection, distraction detection, drowsiness detection, gesture recognition, 3d face tracking, face analysis, facial recognition, object detection, and human pose estimation. Designed for real-world environments using edge computing it uniquely targets deep learning for embedded systems,

nviso_mobile_sdk_overview2.png


NVISO delivers real-time perception and observation of people and objects in contextual situations combined with the reasoning and semantics of human behavior based on trusted scientific research. The NVISO Mobile SDK is supported through a long term maintenance agreement for multi-party implementation of tools for AI systems development and can be used with large-scale neuromorphic computing systems. When used with neuromorphic chips, the NVISO Mobile SDK can be used to build gaze detection systems, distraction and drowsiness detection systems, facial emotion recognition software, and a range of other applications of neuromorphic computing where understanding human behaviour in real-time is mission critical.

Screenshot_2023-07-03-21-18-29-12_4641ebc0df1485bf6b47ebd018b5ee76.jpg
 
Last edited:
  • Like
  • Fire
  • Love
Reactions: 44 users

Diogenese

Top 20
I know there has been some, shall we say conjecture recently on Nviso but this popped up in a Google search & dated week or so ago.

Pushing the neuromorphic mobile EVK.

Works for me if can get some teaction :)





1920x768_Insights-Develop-1024x410.jpg


HUMAN BEHAVIOUR AI​

MOBILE PHONES​

NVISO’s Human Behaviour AI SDK allows application developers to build innovative solutions to transform our lives using AI on mobile phones. Understand people and their behavior to make autonomous devices safe, secure, and personalized for humans.

DOWNLOAD TRIAL EVK


AI-ENABLED​

HUMAN MACHINE INTERFACES​

NVISO’s Mobile SDK provides a robust real-time human behaviour AI API, NVISO Neuro Models™ interoperable and optimised for neuromorphic computing, the ability for flexible sensor integration and placement while delivering faster development cycles and time-to-value for software developers and integrators. It enables solutions that can sense, comprehend, and act upon human behavior including emotion recognition, gaze detection, distraction detection, drowsiness detection, gesture recognition, 3d face tracking, face analysis, facial recognition, object detection, and human pose estimation. Designed for real-world environments using edge computing it uniquely targets deep learning for embedded systems,

nviso_mobile_sdk_overview2.png


NVISO delivers real-time perception and observation of people and objects in contextual situations combined with the reasoning and semantics of human behavior based on trusted scientific research. The NVISO Mobile SDK is supported through a long term maintenance agreement for multi-party implementation of tools for AI systems development and can be used with large-scale neuromorphic computing systems. When used with neuromorphic chips, the NVISO Mobile SDK can be used to build gaze detection systems, distraction and drowsiness detection systems, facial emotion recognition software, and a range of other applications of neuromorphic computing where understanding human behaviour in real-time is mission critical.

View attachment 39212

Hi Fmf,

This bit is especially interesting:


MICROCONTROLLER UNIT (MCU)

AI functionality is implemented in low-cost MCUs via inference engines specifically targeting MCU embedding design requirements which are configured for low-power operations for continuous monitoring to discover trigger events in a sound, image, or vibration and more. In
addition, the availability of AI-dedicated co-processors is allowing MCU suppliers to accelerate the deployment of machine learning functions.
 
  • Like
  • Fire
  • Thinking
Reactions: 44 users
Hi Fmf,

This bit is especially interesting:


MICROCONTROLLER UNIT (MCU)

AI functionality is implemented in low-cost MCUs via inference engines specifically targeting MCU embedding design requirements which are configured for low-power operations for continuous monitoring to discover trigger events in a sound, image, or vibration and more. In
addition, the availability of AI-dedicated co-processors is allowing MCU suppliers to accelerate the deployment of machine learning functions.
Hi D

You thinking a potential tie in with someone in particular :unsure:
 
  • Like
  • Love
  • Haha
Reactions: 8 users

Diogenese

Top 20
Hi D

You thinking a potential tie in with someone in particular :unsure:
Do we know where nViso gets their MCUs?

Akida 1500 could work with MCUs. All that is needed is sufficient processing power and memory to enable configuration of Akida and to handle the output from Akida.

We know Renesas has a licence for 2 nodes (8 NPUs), but I don't know how many nodes are required for nViso's functions like face recognition.

nViso is a BrainChip partner, so it may not need a licence:


1688395950646.png


BrainChip and NVISO are targeting battery-powered applications in robotics and mobility devices addressing the need for high levels of AI performance in ultra low power environments. Implementing NVISO’s AI solutions with BrainChip’s Akida drive next generation solutions.



This is another signpost to Akida:

NVISO NEURO MODELS™​

ULTRA-EFFICIENT DEEP LEARNING AT THE EDGE​

NVISO Neuro Models™ are purpose built for a new class of ultra-efficient machine learning processors designed for ultra-low power edge devices. Supporting a wide range of heterogenous computing platforms ranging from CPU, GPU, DSP, NPU, and neuromorphic computing they reduce the high barriers-to-entry into the AI space through cost-effective standardized AI Apps which work optimally at the extreme edge (low power, on-device, without requiring an internet connection). NVISO uses low and mixed precision activations and weights data types (1 to 8-bit) combined with state-of-the-art unstructured sparsity to reduce memory bandwidth and power consumption. Proprietary compact network architectures can be fully sequential suitable for ultra-low power mixed signal inference engines and fully interoperable with both GPUs and neuromorphic processors.
 
Last edited:
  • Like
  • Fire
  • Love
Reactions: 47 users
Recent Indian article on MBRDI in India.

Neuromorphic and ChatGPT anyone?

Couple of excerpts.

How Mercedes-Benz is driving a culture of innovation at its research and development centre By embracing innovation, the company is empowering its workforce to adopt a mindset that encourages thinking beyond conventional boundaries

By Radhika Sharma | HRKatha -June 23, 2023


Read more at: https://www.hrkatha.com/features/how-mercedes-benz-is-driving-a-culture-of-innovation/

Mercedes-Benz Research and Development India (MBRDI) recognises the pivotal role of innovation in promoting a healthy work culture. “One aspect that sets us apart is our work culture and emphasis on employee well-being. As the largest research and development centre of Mercedes-Benz outside of Germany, with a growing workforce, we have established ourselves as a powerhouse for delivering cutting-edge technology and innovation. Our primary focus is to drive the future of sustainable mobility, ensuring high quality, safety and innovation. Our commitment to innovation extends beyond technology and is reflected in our progressive work culture,” points out Mahesh Medhekar, vice president-human resources, Mercedes-Benz Research and Development India.


Innovation learning: The company focuses on innovation learning for its employees. Recently, it hosted a seminar on biomimicry — a field that combines generative AI and neuromorphic computing to emulate the human brain’s behaviour. This cutting-edge science allows MBRDI to enhance the capabilities of its vehicles, enabling them to understand and respond to the driver’s behaviour, ensuring safety and comfort. “Innovation learning encompasses various aspects, including deep learning, software patterns and techniques such as design thinking, all aimed at fostering innovation within our organisation. These practices serve as key pillars in our pursuit of continuous innovation,” enunciates Medhekar.

1688395900133.png


“Innovation learning encompasses various aspects, including deep learning, software patterns and techniques such as design thinking, all aimed at fostering innovation within our organisation. These practices serve as key pillars in our pursuit of continuous innovation.” Mahesh Medhekar, vice president-human resources, Mercedes-Benz Research and Development India
 
  • Like
  • Fire
  • Love
Reactions: 22 users
Do we know where nViso gets their MCUs?

Akida 1500 could work with MCUs. All that is needed is sufficient processing power and memory to enable configuration od Akida and to handle the output from Akida.

We know Renesas has a licence for 2 nodes (8 NPUs), but I don't know how many nodes are required for nViso's functions like face recognition.

nViso is a BrainChip partner, so it may not need a licence:


View attachment 39219

BrainChip and NVISO are targeting battery-powered applications in robotics and mobility devices addressing the need for high levels of AI performance in ultra low power environments. Implementing NVISO’s AI solutions with BrainChip’s Akida drive next generation solutions.



This is another signpost to Akida:

NVISO NEURO MODELS™​

ULTRA-EFFICIENT DEEP LEARNING AT THE EDGE​

NVISO Neuro Models™ are purpose built for a new class of ultra-efficient machine learning processors designed for ultra-low power edge devices. Supporting a wide range of heterogenous computing platforms ranging from CPU, GPU, DSP, NPU, and neuromorphic computing they reduce the high barriers-to-entry into the AI space through cost-effective standardized AI Apps which work optimally at the extreme edge (low power, on-device, without requiring an internet connection). NVISO uses low and mixed precision activations and weights data types (1 to 8-bit) combined with state-of-the-art unstructured sparsity to reduce memory bandwidth and power consumption. Proprietary compact network architectures can be fully sequential suitable for ultra-low power mixed signal inference engines and fully interoperable with both GPUs and neuromorphic processors.
Wondered if you were fishing in Renesas' pond :)

Not inconceivable....they taped out for an unnamed 3rs party :unsure:
 
  • Like
  • Fire
  • Thinking
Reactions: 10 users

Diogenese

Top 20
Wondered if you were fishing in Renesas' pond :)

Not inconceivable....they taped out for an unnamed 3rs party :unsure:
But just to muddy the waters, Akida is qualified across ARMs range of processors, not to mention Intel, MegaChips, ...
 
  • Like
  • Haha
  • Fire
Reactions: 18 users
Geez....we might need a bigger bandwagon :LOL:


On May 2023, EDI started the implementation of a new Horizon Europe project (EcoMobility) with the goal to develop a connected transportation ecosystem​

ELEKTRONIKAS UN DATORZINĀTŅU INSTITŪTS > NEWS > ON MAY 2023, EDI STARTED THE IMPLEMENTATION OF A NEW HORIZON EUROPE PROJECT (ECOMOBILITY) WITH THE GOAL TO DEVELOP A CONNECTED TRANSPORTATION ECOSYSTEM
30. June, 2023

“Improved automotive vision systems are a crucial stepping stone towards safe and sustainable transportation, hence developing reliable and energy efficient solutions is in the center of attention. To address this challenge, the field of neuromorphic computing, a brain-inspired branch of AI, holds great promise. Specifically, spiking neural networks (SNNs), which mimic the structure and functionality of the nervous system, offer notable advantages such as speed and energy efficiency. Until now, the lack of efficient hardware accelerators has hindered the widespread adoption of SNNs. Nevertheless, this situation is rapidly changing, and EDI, with its expertise in reconfigurable logic devices, is well-positioned to contribute to further advancements in this field of research,”

on new frontiers in neuromorphic machine perception reflects Edgars Lielāmurs, the research assistant at EDI.
 
  • Like
  • Fire
  • Love
Reactions: 32 users
But just to muddy the waters, Akida is qualified across ARMs range of processors, not to mention Intel, MegaChips, ...

ron-ogden-so-many-options.gif
 
  • Haha
  • Like
Reactions: 12 users
Top Bottom