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Preface

Intelligent Edge-Embedded Technologies for Digitising Industry

Industrial intelligent edge systems are designed with more computing power
and sensors to enable analytics, AI inferencing, and natural user interfaces.
These new capabilities enhance their behaviour and provide new func-
tionalities based on sensing, actuating, programming, and connectivity to
dynamically interact and autonomously function.

Intelligent edge architectures are complementary to embedded systems,
bringing scalable computing nearer to resource-constrained embedded sys-
tems and enabling these systems to leverage more complex, computing-
intensive processes (including machine and deep learning), and local pro-
cessing of real-time and historical data.

Intelligent edge devices are often resource-constrained by design. Such
fixed-function systems are highly optimised for performance (speed, reliabil-
ity, safety) and cost.

By making additional computing resources available to these systems,
intelligent edge deployments enable diverse decision-making processes in the
local industrial environment. These include system-level optimisations across
devices, changes to the programming of specific devices, and other forms of
control.

AI algorithms are processed locally, directly on the device, on the gate-
way, or on-premises servers near the edge devices. The algorithms utilise the
data generated by the devices themselves. Industrial edge IIoT devices can
make independent decisions in a matter of milliseconds without having to
connect to the cloud.

As the computing and microcontroller architectures evolve, they support
edge AI on embedded industrial systems and make the most of the limited
computing resources there. The ARM Cortex cores, and AI accelerator’s
developments are pushing forward AI in resource-constrained environments.
Several chip manufacturers are directly enabling machine learning-based AI
on their microcontrollers. The increased hardware support for AI, including

xv
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tools for edge AI, opens new opportunities for industrial edge AI imple-
mentations and deployments with new AI configurations that can operate in
real-time and be integrated into the industrial manufacturing process.

This book provides a valuable resource for researchers working with
intelligent edge-embedded technologies for digitising industry and industry
professionals, machine and deep learning engineers, front-end developers,
IIoT developers, and back-end developers looking to deploy intelligent
solutions at the industrial edge.
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Abstract

This book lays down the technological foundation for and introduces key arti-
ficial intelligence (AI) concepts and technologies for the digitising industry.
While this chapter does not exhaustively cover all types of AI, it com-
prehensively prioritises the features of AI-based industrial applications and
designs and defines the reference terminology used in the other chapters
of the book.

AI integrates several interrelated technologies to solve problems and per-
form tasks to achieve defined objectives; hence, AI can be approached from
many viewpoints, such as mathematics and computer science, linguistics,
psychology, neurology, and philosophy. The approach in this chapter is from
a technological and industrial perspective, and concepts and functions are
presented intuitively and visually, focusing on AI, as it is applied to embedded
systems, with industrial automation, interactivity, and sustainability in mind.

This already reflects the next-generation deployment of AI into edge
devices (called edge AI) and the emergence of different edge layers (i.e.,
micro-, deep- and meta-edge), which contrasts existing solutions that are
currently deployed in the cloud. The edge processing continuum includes

1
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sensing, processing and communication devices (micro-edge) close to the
physical industrial assets under monitoring, gateways and intelligent con-
troller processing devices (deep-edge) and on-premise multi-use computing
devices (meta-edge).

Furthermore, instead of attempting to present a definition of AI that
is common to all industries, the chapter relies on a framework of classifi-
cations and continuums along various dimensions, including the industrial
intelligence spectrum, the intelligent capabilities spectrum, the edge-cloud
continuum, the symbolic reasoning – pattern recognition continuum and,
not the least, the problem-solving spectrum. The chapter introduces some
of the main pillars of problem solving, such as expert systems, genetic and
evolutionary computation, intelligent agents, machine learning (ML) and
more.

This chapter, in particular, will detail ML approaches and neural net-
works. During the past decades, the trends and developments in AI have
followed a recurring pattern, where the focus has moved back and forth
between logic (symbolic reasoning) and pattern recognition (neural net-
works), driven by the varying abilities of technologies to acquire data, learn,
derive new information and reason to reach decisions. In the last years, ML
and neural network models have been the primary focus due to advances in
hardware development and processing capabilities. Furthermore, embedded
ML has been increasingly gaining popularity in industrial applications.

This chapter introduces several contributions. First, it gives a high-level
overview of how AI works. Second, it shows how AI methods and techniques
can be incorporated into an industrial design workflow. Finally, it provides
a valuable intuitive understanding of how AI methods and techniques work
when deployed in edge devices and how they operate in industrial settings.

Keywords: artificial intelligence, industrial AI, sustainable AI, intelligent
embedded systems, symbolic AI, logic-based technologies, machine learning,
AI-based problem-solving, AI technology stack, neural network architec-
tures, embedded ML development.

1.1 Industrial AI

A recent report [1] predicted that the smart manufacturing market is expected
to reach $446.24 billion by 2029, growing at a compound annual growth rate
(CAGR) of 21.5% from 2022 to 2029. The smart manufacturing market is
segmented into industrial Internet of Things (IIoT), cloud computing and
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storage, robotics and automation, industrial cybersecurity, additive manufac-
turing, augmented reality (AR), virtual reality (VR), digital twin, artificial
intelligence (AI) and blockchain-based technology. In 2022, the IIoT segment
is expected to account for the largest share of the smart manufacturing market.
The large market share of this segment is attributed to factors such as the con-
sistent declining cost of IIoT sensors, the significant rise in overall equipment
effectiveness (OEE) through IIoT usage and increasing government initiatives
to promote digital transformation. According to another market research
report [2], the industrial AI market is expected to grow from $1,482.50
million in 2021 to 17,925.50 million by 2028 at a CAGR of 51.50% during
the forecast period of 2022–2028.

Industrial AI refers to the application of AI in various industrial sec-
tors and is considered a game changer in the manufacturing industry. The
transition to Industry 5.0 is likely to drive the market’s growth in the next
few years. In manufacturing plants, the information obtained from various
sensors, software and IIoT-driven systems may become too complex for
humans to analyse. The use of AI is an efficient solution that can assist the
manufacturing sector in transforming completely through ML and pattern
recognition. The use of AI in manufacturing plants allows users to analyse
and predict user behaviour, to perform predictive maintenance to prevent
unwanted shutdowns, detect abnormalities in the production process and
much more. AI also facilitates the use of real-time information, which could
improve decision-making time, lead to better fabrication quality and yield,
and boost organisational growth. The increasing volume of data gathered
through various devices together with the widespread availability of high-
speed communication networks and the upcoming implementation of wire-
less technologies will contribute to the increased use of AI in manufacturing
in the future.

Although embedded in an increasing variety of products, processes and
services in many industrial sectors, AI remains difficult to define. In scientific
terms, AI is for example defined as “The designing and building of intelligent
agents that receive precepts from the environment and take actions that affect
that environment.” [8]. AI and machine intelligence can also be defined as
follows: “Artificial Intelligence is [...] the study of the computations that make
it possible to perceive, reason, and act.” [4]; “[Intelligence is] the capability of
a system to adapt its behaviour to meet its goals in a range of environments.”
[5]; “Intelligence measures an agent’s ability to achieve goals in a wide range
of environments.” General definition: “A very general and flexible capacity
to succeed when faced with a wide range of problems and situations.” [6];



4 Industrial AI Technologies for Next-Generation Autonomous Operations

“Intelligence is the computational part of the ability to achieve goals in the
world.” [7]. In more general terms AI refers to the ability for machines,
systems, models, computers, to be able to mimic and improve intelligence
in general, and human intelligence in particular.

Currently, neither the industry nor the scientific community has agreed
on a particular definition. The presently available definitions are too vague,
or too broad or too narrow. This is largely because of the growing variety and
specific properties of AI technologies and partly because of the convergence
of multiple technologies in the last years into AI, such as semiconductor
technologies, cyber-physical systems (CPSs), internet of things (IoT), IIoT
supervisory control and data acquisition (SCADA), programmable logic con-
trollers (PLCs), 5G, distributed ledger technologies, edge computing, etc. The
AI ecosystems are extending to related fields, such as edge computing, to
address the challenges and requirements of various industrial sectors, and
each field defines AI from its own perspective [11].

In this chapter, AI is approached from a computer science and infor-
mation technology perspective, encompassing numerous technologies and
frameworks, and focusing largely on embedded hardware/software systems
that use searching algorithms, logic-based procedures or ML methods. ML
represents a paradigm shift in computing - a change from explicitly modelling
solutions to modelling systems that approach such solutions, which drives one
to think in a new framework. ML - both software and hardware - is therefore
addressed in several sections.

1.1.1 Challenges of Industrial AI versus Consumer AI

Although industry stakeholders have different perceptions of AI technolo-
gies and their industrial applications, industrial AI poses unique challenges
that are absent from consumer AI or are present but of less importance or
differ from the challenges related to the latter. Some of these challenges are
described below.

Industrial training data are in short supply. AI-based models require large
amounts of data, and their performance relies strongly on training data
set availability. These data sets exhibit tremendous potential for optimising
industrial processes in cases in which traditional approaches, such as stochas-
tics and analytical or numerical models, can no longer be used. However,
for many industrial sectors, it is not easy to create training data sets that are
sufficiently large and cover common aspects that would allow them to be used
by different industrial stakeholders to benchmark similar AI models.
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Industrial training data are often noisy or inaccurate. While data coming
from consumers are hard to misinterpret, this is not the case with industrial
data, which is frequently captured from sensors and IoT/IIoT that produce
noisy data sets. Sensor data can also be voluminous, and not all data is
relevant. Data can also be inaccurate when generated by “digital twins”
models that are not always created and maintained in tandem with the real
system. Furthermore, the actual deployment of sensors close to production
environments that are generally ungracious of the sensors (higher likelihood
of sensor malfunction) and redundancy to alleviate this problem introduces
additional challenges and costs. Nevertheless, despite the high volume of
noisy, incomplete, or faulty data, industrial AI needs to be highly accurate.

Industrial AI runs mostly on the edge. Consumer data are processed on com-
puters with seemingly infinite capacities, and current AI tools are optimised
for cloud services and therefore do not always fulfil the stringent requirements
of industrial applications, such as real-time processing, low latency, high
reliability, safety, data privacy and guaranteed QoS. To be successfully imple-
mented in industry, AI must be deployed on the edge to support distributed
on-site data processing with state-of-the-art AI components, algorithms,
techniques, and methods.

Industrial AI can be subject to compliance with industry standards and other
regulations. While consumer AI can at most be subject to direct consumer
scrutiny, industrial AI is subject to compliance requirements, including tech-
nical, legal and corporate requirements, as well as local and governmental
regulations, which may impact operations, particularly when large budgets
are at stake.

Industrial AI involves high costs. The development, implementation, deploy-
ment, repair, and maintenance of AI-based solutions necessitate vast invest-
ments. AI-based systems require frequent upgrades to meet the needs of
changing environments and to make machines more intelligent day by day. In
severe breakdowns, the recovery of lost codes and the restoration of AI-based
systems may require considerable amounts of time and costs. Maintenance of
the sensor part of the AI solution also contributes to overall costs.

Industrial AI must be explainable. Industrial AI applications must be able
to explain and justify their predictions and decisions, especially when the
consequences of wrong decisions can be disastrous.

Industrial AI systems are difficult to validate and test due to the costs and
complexity involved. The complexity of AI tasks has increased steadily
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to address new paradigms for automating, conceptualising, designing, and
implementing AI-based systems that include sensors, hardware, software,
models, and algorithms. In many cases, industrial AI systems are trained and
tested using simulations and virtual validations.

1.1.2 Sustainable AI

The search for improved accuracy on large-scale problems is driving the
use of new AI techniques and increasingly deeper neural networks, thereby
increasing energy consumption and climate-changing carbon emissions.

Advances in scientific computing have demonstrated the advantages of
modelling and simulation across industrial and scientific domains. However,
energy consumption is a feasibility constraint for computational modelling,
and AI must reduce the energy computation costs associated with high-
performance computing in front of trends such as declining Moore’s Law.

The evolution and expansion of AI-based technologies require moving
towards sustainable AI and using AI for sustainability in various industrial
sectors. To build and strengthen sustainable AI technologies and applications,
new solutions need to be developed to move AI processing from the cloud to
the edge, optimise and reduce the need for data sets and amount of data for
training and learning and address the analytics close to the data sources.

Sustainable AI (or AI sustainability) requires stimulating change in the
entire lifecycle of AI technologies and applications (e.g., AI function gener-
ation, AI technology stack, HW/SW platforms, training/learning, re-tuning,
re-training/learning implementation, governance) towards more efficient eco-
logical integrity and economic efficiency. Sustainable AI technologies are
compatible with sustainable environmental resources for current and future
generations, and new digital economic models are aligned with industrial and
societal values.

Research and developments in industrial edge AI incorporate two essen-
tial elements: sustainable edge AI (e.g., edge AI technologies development
for optimised resource processing consumption, resource consumption for AI
models, reduction of carbon emissions, computing power, etc.) and edge AI
for sustainability (e.g., the use of edge AI to address sustainability goals in
different applications and industrial sectors). These elements can be viewed
from the perspective of the different pillars of sustainability (e.g., social,
economic, and environmental).

Sustainable industrial edge AI focuses on developing AI HW/SW/
algorithms and resource-efficient edge AI technologies to reduce carbon
emissions and computing power consumption of AI models.
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Industrial edge AI for sustainability and sustainable computing leverages
intelligent processing technologies to address environmental and climate
problems and ameliorate the accelerating trend towards high-performance
computing in modelling and simulation.

Leveraging hardware modules and platform characteristics to generate
compact and accurate models that require less computational resources is
essential for sustainable edge AI. Combining different techniques, including
knowledge distillation, AI HW/SW co-optimisation for power efficiency and
energy-aware model compression, can result in models with negligible loss
of accuracy.

Sustainable edge AI implies less data for model training to achieve high-
accuracy model performance, thereby reducing the expensive data collection
and annotations, accelerating model training when faced with a new problem
and reducing the resource-intensive process of training a new model from
scratch.

The development of semi-supervised methods [16] by incorporating
external knowledge, active learning, transfer learning and short learning
approaches, such as meta-learning and unsupervised representation learning,
are elements of the AI technology stack that supports sustainable edge AI
developments. These methods facilitate domain adaptation across problems,
including natural language processing and predictive maintenance in different
industrial sectors.

Sustainable edge AI requires enabling more accurate modelling tech-
niques, reducing computing costs by reducing time-to-solution, decreas-
ing the need for high-resolution models where possible and leveraging
resource/data-efficient AI developments to ensure that the application of AI
is not energy/resource-consuming.

Sustainable edge AI requirements advance the development of new
embedded hardware modules, platforms, and accelerator architectures (e.g.,
system on module (SoM), system on chip (SoC), a system in package (SiP),
neuromorphic, hybrid, tensor-based, etc.).

1.2 Capabilities Spectrum of Industrial AI

This chapter relies on a framework of classifications and continuums
along various dimensions, including the industrial intelligence spectrum, the
intelligent capabilities spectrum, the edge granularity, the edge continuum,
the symbolic reasoning-pattern recognition continuum and not the least, the
problem-solving spectrum.
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The foundation supports the ongoing projects and stakeholders across the
industrial sectors with a common methodology and roadmap. Meanwhile, it
prioritizes the right features for AI-based applications and designing them
in the right way in different use cases across various industrial sectors using
synergies among different solutions, methods, or techniques.

The foundation assists in choosing state-of-the-art AI technologies and
having a clear overview over the existing state of play in the field for optimal
selection and trade-off of these technologies, methods, and techniques for use
cases in different industrial sectors.

AI empowers computers to mimic human intelligence, such as decision-
making, text processing and visual perception. In this context, AI is a broad
field, encompassed by multiple contributing branches, such as ML, robotics
and computer vision.

AI can be understood in the context of the tasks that we expect an
intelligent machine, IoT/IIoT device to be capable of performing.

An intelligent machine, IoT/IIoT device is any system whose behaviour
could be interpreted as reflecting human intelligence, which may be demon-
strated in basic capabilities, such as perceiving, comprehending, acting, and
learning. For example, the three-dimensional classification scheme for evalu-
ating an AI-based systems in [37] differentiates four capabilities: perception,
understanding, action and communication.

In the context of the European projects contributing to this book, four
capabilities are differentiated as shown in Figure 1.1, but the list is extended
with more capabilities, which are elaborated below from the perspective of
their application to industry.

Figure 1.1 AI systems capabilities.
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The perceiving or sensing capability allows industrial machines,
IoT/IIoT devices to scan their environment using various sense devices, and to
collect and process data streams (images, sounds, speech, text, and other data)
from diverse sources, such as radar, light detection and ranging (LiDAR),
cameras, ultrasound sensors, etc.

The processing is often complicated, as it involves great numbers of
distinct appearances over multiple occasions, varying by view and angle,
as well as scenes suggesting objects that may be hidden. Mechanisms, such
as data, information, and sensor fusion are employed to assimilate various
sources of information, often imperfect and uncertain, and deal with multiple
dimensions of remote sensing (spatial, temporal, spectral, and radiometric
resolution).

The comprehending capability enables industrial machines, IoT/IIoT
devices to recognise patterns and context in the information it collects, just
as humans interpret data/information by understanding patterns and context
in their perceptions of the environment, but it is important to note that
comprehending does not have the same meaning for machines as for humans.
Machines do not actually “comprehend” the world around them; rather, they
are trained to “learn” how to recognise patterns.

An industrial machine’s and IoT/IIoT device’s learning capability
enables it to continually improve its performance by learning from the success
or failure of its actions. Like humans, machines learn in various ways, for
example, by trial and error. A machine tries various solutions to a problem
until it achieves the desired results. It records all the steps actions that
produced those results in its memory for use the next time it is given the
same problem.

The reasoning capability enables industrial machines and IoT/IIoT
devices to draw relevant inferences from the situation at hand. Reasoning has
become an essential component of AI only in the past decades before which
the ability was limited to humans.

Logic employs two broad methods of reasoning: the deductive and induc-
tive approaches. Deductive reasoning works from the “top down”, moving
from a theory to its confirmation (or rejection) by collecting observations to
address the hypotheses and narrowing down the possibilities.

By contrast, inductive reasoning works from the “bottom up”, mov-
ing from specific observations to broader generalisations and theories by
detecting patterns and then formulating testable hypotheses.

The problem-solving capability enables industrial machines and
IoT/IIoT devices to move from a problem’s initial state to the final goal state
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through a stepwise gradual reduction of the difference between the current
state and any intermediate goal state.

This involves using several techniques, such as algorithms and heuristics,
to solve a problem. The ability to solve problems, a highly prized skill
in both humans and machines, involves two distinct, possibly conflicting
processes: creativity and decision making. The former, creativity, generates
options and possible solutions, and then the latter, decision making, selects
the optimal one.

The acting capability enables industrial machines and IoT/IIoT devices to
act (inspired by their perception or comprehension) in the physical or digital
environment. It is implicitly assumed that machines will act rationally and
determine the best and safest course of action for achieving their goals.

The interacting capability enables industrial machines and IoT/IIoT
devices to connect to the environment and to everything and collabo-
rate with humans, other machines, and infrastructure (physical and digital,
edge/cloud, etc).

This emerges primarily when industrial machines have to interact with
people, which assumes the ability to understand language. For example, when
an AI system explains how it came to its decision, it must adopt the normal
conventions of human interaction to make itself understood.

The locating capability enables industrial machines and IoT/IIoT devices
to determine (relative) positions very precisely and accurately on network,
dynamic maps, GPS, GNSS, etc., that help in identifying the context of
actions. These capabilities could also apply to locating the state within a
state machine or for temporal locating (e.g., clock or relative clocks between
devices used for synchronisation) that can improve the initial state for action.

1.3 The Industrial AI Spectrum

In the previous section, a classification of AI was given in the context of
the tasks that we expect an intelligent industrial machine to be capable of
performing.

Additionally, AI can be understood from the perspective of the (theoret-
ical) ability of an intelligent machine situated on a continuum, from specific
to general intelligence or from basic to super intelligence. Some forms of AI
within this continuum can be distinguished by names, such as Narrow AI,
General AI, Weak AI, Strong AI [35].

These various forms of AI differ primarily in their range of abili-
ties/capabilities and the level of training required to implement them. In the
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following, they are described in contrasting pairs from the perspective of their
relevance to industrial applications.

1.3.1 Narrow AI vs. General AI

General AI defines an AI system that parallels human intelligence. As such,
it is considered an ultimate vision of AI that can handle a wide variety of
cognitive tasks across multiple domains.

General AI is the basis for future human-like autonomous systems and
robots, which will implement hundreds of systems working in parallel while
communicating with each other in a manner that mimics human reasoning.
While the development of technology pushes the abilities of AI ever closer
to General AI (e.g., consciousness, exhibit common sense, ability to reason,
solve a puzzle, identify needs and emotions, adapt to conditions as the
context is changing, use knowledge and experience to plan, etc.), most AI
surrounding us today is Narrow AI.

Broadly speaking, Narrow AI can be thought of as anything that is
not General AI. Narrow AI defines an AI system capable of performing a
particular task that any human would ordinarily perform. Narrow AI sys-
tems are designed to precisely execute a well-defined task. These systems
are optimised to excel in controlled environments with a limited set of
parameters, demonstrating capabilities that match, or even surpass, those of a
human. However, their capabilities are narrow (e.g., e-commerce suggestions
based on user search patterns, weather prediction, predictive maintenance,
etc.), and they cannot do anything that is not explicitly stated in their
programming.

A comparison of the features of Narrow AI and General AI is illustrated
in Figure 1.2. The primary difference between Narrow and General AI comes
down to adaptability. For AI to be generally intelligent, it must be able to
adapt rapidly to changing surroundings in the same way that humans do. In
practice, this would mean to pass the Turing test repeatably and consistently.
Turing defined intelligent behaviour as the ability to achieve human-level
performance in all cognitive tasks sufficient to fool an interrogator.

1.3.2 Weak AI vs. Strong AI

The terms Weak AI and Strong AI are sometimes used in place for Narrow
AI and General AI, respectively. Weak and Strong AI were coined in [9] to
differentiate the performance levels in different kinds of AI machines.
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Figure 1.2 Narrow AI vs General AI.

Strong AI systems (e.g., advanced robotics, intelligent robotic things,
etc.) behave intelligently, think as humans do, and have a conscious, sub-
jective mind; they know who the AI systems are, what they are doing, and
why. Strong AI systems are represented by an AI-based application with
a larger scope, using high-level clustering and association to process data,
information, and knowledge.

In contrast, Weak AI defines the simulated thinking of the brain processes
with the help of a computer. It behaves intelligently (e.g., chatbots, Siri,
Alexa, etc.) but does not exhibit any kind of consciousness about what it
is doing.

Weak AI systems are represented by Narrow AI-based applications with
a limited scope that are optimised by using supervised and unsupervised
learning to process data collected from different sources (e.g., real-time or
from databases, etc.).

Although Weak AI systems never attain the breadth of a General AI, most
Narrow AI systems are very powerful and focused. It is therefore important
to not conflate Narrow AI, which deals with specific tasks, with weak AI.

1.3.3 Basic AI vs. Super AI

The term Super AI refers to the combination of General AI and Strong AI
at the point at which it surpasses the intelligence and ability of the human
brain. This is made possible primarily due to the amount of memory and
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instantaneous access to data, which far exceeds human limits. In addition,
this AI will improve self-capabilities to feel things and emotions.

Nevertheless, since Strong AI is still theoretical, the realization of Super
AI lays far in the future, relying strongly on technological advancements in
hardware (quantum computing), software, and other fields (biomimicry).

Basic AI, in contrast, can be considered for any AI that is under the thresh-
old of Super AI. It is an all-encompassing term that denotes the simplest tasks
and technologies used and is mentioned here merely as a foil to Super AI.

1.3.4 Red AI vs. Green AI

The term Green AI [12] defines AI research that yields novel technological
results while considering the financial cost of developing, training, and oper-
ating, as well as encouraging a positive impact both on the environment and
inclusiveness.

Green AI includes the optimisation of the use of data/information, the
processing across the edge-cloud continuum, the transfer and exchange of
data/information, and storage.

The term Red AI defines AI research that seeks to achieve progress
regardless of the huge computational power required and environmentally
unfriendly impact involved.

While Red AI research has made valuable scientific contributions to
the field, making AI both greener and more inclusive will lead to wider
acceptance of AI in industry.

Nevertheless, ensuring a smooth transition from Red AI to Green AI
is not straightforward. For instance, the type of energy sources used for
powering the data centres, edge computing facilities, or the intelligent
devices at the edge is part of the efficiency equation associated with train-
ing/learning/reasoning algorithms. Even if powered by renewable sources,
massive power consumption for stronger results from the algorithms may not
be considered an improvement step towards Green AI.

To conclude the discussion on the industrial AI spectrum, the degree to
which more General, Strong, Super and Green AI can be achieved will largely
depend on the abilities of the particular AI system to continuously learn
how to solve problems from multiple application domains without requiring
extensive retraining for each, to learn in a self-supervised manner, and to
adapt the knowledge and skills acquired to new situations with minimal
training.
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Figure 1.3 AI problem solving domains.

1.4 AI Problem Solving Domains

Problem-solving is a method used to reach a desired goal or find a solution
to a problem. In the context of computer science, problem-solving refers to
various techniques, such as forming efficient algorithms and heuristics, to find
desirable solutions. A single problem can have many different solutions, and
these can be achieved by different methods. Also, some problems have unique
solutions, depending on the nature of the given problem and the domain.

AI has always been beneficial for solving complex problems and chal-
lenges that cannot be solved by other means. This section presents some of the
major AI problem solving domains that are most used in industrial problem-
solving and/or that have great potential for sustainable developments. The
various branches of AI and AI problem-solving domains are illustrated in
Figure 1.3. For a more complete overview of problem-solving techniques, we
refer the interested reader to [4][8].

1.4.1 Expert Systems

Expert systems (ES) are computer programs designed to act as experts in
a particular domain or area of expertise. In other words, they are designed
to model human expertise in that specific knowledge area. Problem-solving
relies on organising considerable amounts of knowledge and then system-
atically searching through them when selecting the path to go with each
decision, ultimately leading to a solution. A typical architecture is shown in
Figure 1.4.
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Figure 1.4 Typical expert system architecture.

There are two basic components in an expert system: a knowledge
database and an inference engine. The knowledge base mainly consists of
facts about that domain (declarative knowledge) and rules for applications
to those facts (procedural knowledge). The most common representation of
human expert knowledge is in the form of rules, for example, an ‘if A, then
B’ structure.

The inference engine processes the input information (for example, that
A is true) and draws the deductions based on the rules (for example, B). It
consists of algorithms, which, via step-by-step inferences, draw deductions
based on the knowledge rules. Depending on the application, ES may also
have a user interface to interact with users.

In the absence of generalised knowledge-based systems, the industry
embraced the idea of practical ES for specific tasks, and there are many
successful applications of ES in medicine, agriculture, and other areas, where
ES assist or even replace human experts with specialised knowledge. ES
remain important tools for decision support or decision-making; neverthe-
less, they have evolved in both the technological and business directions.
ES can now be embedded into applications and can be designed to handle
uncertainty. Furthermore, new knowledge representation and reasoning tools
have been developed for ES: MYCIN [13] for disease diagnosis, DENDRAL
[30] for chemical analysis to predict molecular structure, R1 for configuring
orders for new computer systems [14], Fuzzy Logic UAV (Unmanned Aerial
Vehicle) Motion Planning [31], etc. There are other application areas such as
environment, manufacturing, diagnostic tools for vehicles, and machinery.
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ES remain a feasible solution when there is a lot of human expert knowl-
edge and experience that can be modelled but not enough data to build other
problem-solving systems. ES can also be the preferred solution because of
their unique capability, namely explainability, which other systems lack in
spite of advanced problem-solving capabilities. This could be an obstacle
in some application areas, such as autonomous vehicles, where unexpected
decisions need to be understood.

On the downside, knowledge bases take time to acquire and represent on
computers, and if some knowledge is missing or incomplete, a less reliable
result will be produced. Hence, verification and validation methods and
techniques aimed at ensuring quality are fundamentally important.

Initially, ES were built around rules established by humans, but gradually
the rules are being set by computers, which can interpret and extrapolate
from large volumes of data. In this respect, the AI learning process can be
implemented using top-down approaches (e.g., expert systems) or bottom-up
approaches (e.g., machine learning).

ES and its technology have been one of the most important and widely
used parts of AI and goes back to the beginning of AI, so they have been used
in business for decades. This is an area that will continue to be important in
the future, either independently or in combination with other major branches
of AI.

As a concluding remark, there is a lot to learn from the earlier generation
of AI in our pursuit of the development of explainable and verifiable AI.

1.4.2 Machine Vision

Machine vision (MV) is a branch of AI that enables machines to imitate the
human visual system and perform various tasks, such as image classification
and segmentation, object detection and recognition, and object tracking, using
information collected from various sources including IIoT image sensors.
MV enables intelligent vision devices to grasp their visual surroundings
and to process, analyse and understand digital images. For example, in the
case of autonomous vehicles, MV detects traffic signs, buildings, vehicles,
pedestrians and other participants in the traffic.

Machine vision and computer vision (CV) are sometimes used inter-
changeably, but they are different. Both are used for image processing, so
they both use similar components, such as cameras, IIoT image sensors to
capture images and software to handle the data. However, CV uses systems
with PC-based processors to analyse the imaging data it collects, so it has a
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lot of processing power and is commonly applied in the medical, financial
and security industries. CV can be used alone, without needing to be part of
a larger machine system.

MV, by contrast, is integrated into perception systems in industrial
sectors, such as autonomous vehicles, manufacturing, food processing and
semiconductors. An MV system uses algorithms to process and interpret
an image, and it instructs other components in the system to act upon that
data. MV systems are therefore designed to quickly analyse image data and
make simple, automated decisions on different tasks, such as quality control,
inspection, and guidance. The image could be obtained from a thermal or
infrared sensor, IIoT image sensors, motion detectors or other sources.

Analysis of reams of images produced by sensors requires that the
machines be able to see and understand images, and this is where AI comes
into the picture because its methods and techniques permit the automatic
extraction of information from images.

Machine vision is one of the areas that has greatly benefitted from the
rapid advances in AI/ML, and implementation of MV’s capabilities is now
possible at all micro-, deep-, and meta-edge levels. Modern MV systems are
usually built using different types of neural networks, including deep learning
(DL). DL allows machines, robots and intelligent IIoT devices to recognise
objects with close to human-like ability. At the lower levels, ML algorithms
perform processing techniques on the image, extract features from the image
and access and intertwine multiple views. At the higher levels, they perform
more advanced tasks, such as image classification, and they make inferences
about whether the object in the image belongs to a specific class of objects.
The highest level is where DL is employed to build intelligent, scalable MV
systems that can recognise/identify and react/respond to objects in images
and videos.

From the multitude of neural network architectures, Convolutional Neural
Networks (CNNs) have become increasingly powerful in large-scale image
recognition by combining the feature extraction processes and classifying the
extracted features in the same algorithm. When DL technology is deployed
in IIoT devices, it relies on pretrained DL models, and transfer-learning
techniques are employed to retrain an existing image classifier into a custom
classifier by retraining a small image data set using minimal resources. An
intuitive illustration of CNN-based MV is shown in Figure 1.5.

Nonetheless, some challenges arise when deploying MV on IIoT edge
devices. Most deep NNs are too complex to be created and trained on
most present-day microcontrollers, but if optimised in terms of memory,
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Figure 1.5 Typical CNN-based machine (left) and workflow (right).

processing, and power capabilities, they can run on them. The optimisation
can be done either by rewriting the models in low-level languages or by
quantising to improve the latency and the model size.

Real-time object detection [38] on edge devices with live video analytics
using YOLO (You Only Look Once) are widely used for video surveillance
and are important for mobile robots, including self-driving vehicles.

The machine vision system uses embedded edge AI for use-case appli-
cability and autonomous optimisation in industrial manufacturing visual
inspection and are extensively used in various industrial applications and
sectors.

1.4.3 Robotics

Robotics is a branch of AI that deals with creating machines that can
perform some actions like humans. Al capabilities enable robots to act
intelligently in certain situations by solving problems in a limited sphere
or even learning in controlled environments. Many industries are imple-
menting robotics solutions to overcome critical issues related to production
and execution by eliminating the potential for human error while reducing
redundancy in manual labour.

In recent years, there has been consistent progress in intelligent robotics,
driven by an increased availability of complex and intelligent sensor systems,
powerful computing and communication capabilities, and software platforms.
Progress in deep learning in particular is opening up new opportunities in
industrial robotics – leveraging improvements in MV, robotic grippers that
can pick up randomly placed objects and stack them, and other agile and
dynamic robotics systems that operate at speeds essential for many industrial
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applications. Thus, implementing inference at the edge, without connecting
to the Internet, enables robots to make decisions independently.

The greatest impact has been on automobile industry and the use of
autonomous vehicles. The design of self-driving vehicles requires the inte-
gration of technologies such as sensor fusion, AI decision-making, vehicle-
dynamics prediction, on-the-fly rerouting, and inter-vehicle communication
to carry out tasks such as adaptive cruise control, to safely adjust speed, and
lane-keeping assistance, to keep vehicles centred on the road. A schematic
illustration of an end-to-end deep learning for self-driving vehicles is shown
in Figure 1.6.

Training data contains single images sampled from video, paired with the
corresponding steering command. Training with data from the human driver
is insufficient. The network must likewise learn how to recover from any
mistakes, or the vehicle can slowly drift off the road. In this case, the training
data is augmented with additional images that show the vehicle in different
shifts from the centre of the lane and rotations from the direction of the road.
The images for two specific off-centre changes can be obtained from the right
and left cameras [33].

Figure 1.6 Self-driving vehicles: Training and inference (generate steering commands).
Adapted from [33].
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Images are fed into a CNN which computes a proposed steering com-
mand. The proposed command is compared to the desired command for that
image, and the weights of the CNN are adjusted to bring the CNN output
closer to the desired output. During inference, the trained model generates
steering commands from the input video images.

1.4.4 Biomimicry

The term AI typically connotes emulating, mimicking, or replicating
human intelligence in machines. However, AI also encompasses biological
intelligence, including that of plants, animals, and other living organisms.
Plants, for instance, do not possess brains, but they have senses. Hence, one
of the many lessons to be learned from billions of years of evolution, natural
engineering, and natural design is that embedding more processing power
close to the sensors and actuators will improve intelligent functioning in IIoT
technologies in different industrial applications.

There are many examples of AI problem-solving architectures and tech-
niques that incorporate insight from nature into their solutions, e.g., ML,
robotic vision, and path-planning. Biomimicry is an approach to problem-
solving that produces innovative sustainable solutions by learning from and
replicating the natural patterns observed in living systems and beings (e.g.,
plants, animals, humans) to create remarkably intelligent technologies and
products. These patterns, which appear in nature with varying degrees of
frequency, can be found not only in forms and shapes, but also in processes
(chemical, physical, and behavioural) and ecosystems. Highly fundamental
patterns observed across species that appear very frequently are known as
Life’s principles [25].

Life’s Principles are lessons from nature and can serve as inspirational
lessons for designers and developers and can be applied to various industrial
applications. Being locally attuned and responsive is one of the six primary
Life’s Principles, and it refers to how an organism fits into and integrates with
it surrounding environment. The use of feedback loops is a sub-principle or
strategy for being locally attuned and responsive. Feedback loops are cyclical
information flows that allow organisms to adequately modify their reactions
to environmental stimuli and situations.

We can find hundreds of unique strategies and mechanisms in nature for
sending and receiving signals in a feedback loop. The white clover is a good
example of the information flow that occurs between a prey and the formation
to which it belongs, finalised by feedback to the predator. To survive, this
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Figure 1.7 Life’s principles. Adopted from [25].

plant employs a chemical defence mechanism to ward off herbivores. When
white clover leaves are damaged (chewed), two chemicals mix to form
hydrogen cyanide, a bitter substance that makes the leaves less tasty.

For an AI system, feedback loops are essential because they enable
intelligence. A feedback loop entails the assessing and leveraging of its output
(predictions or recommendations) to retrain and improve the model over time.
Feedback loops are used in ML and DL, especially in neural networks. A
good example is the object recognition technology in self-driving vehicles
and its ability to recognise traffic lights, road signs, pedestrians, automobiles,
and various types of objects, with feedback loops improving its accuracy.
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Through feedback from the output layer in a neural network model, the
variations of weights in the hidden layer(s) are adjusted to fit the expected
outputs. Positive feedback increases the change or output, while negative
feedback decreases the change or output.

Returning to the white clover example, when a white clover leaf is
attacked, this action triggers signals in every direction, making the other
leaves harder to chew and upgrading the mechanical and chemical resistance
of the entire formation. This is made possible by its network infrastructure
composed of runners, commonly found in many plant species.

Runners are stems growing just at or below the soil surface. They form
roots at the nodes, new plants grow from their buds, and they are part of
a propagation strategy. Above ground, these plants most often appear to be
distinct individuals, but underground, they are interconnected, such that when
one member of the formation senses something, a signal is sent to every other
member, facilitating a quick response to a predator.

Feedback loops also occur in ecosystems, with connections within the
formation allowing for rapid information circulation, information processing,
and reaction. To function like ecosystems, AI systems must be strongly
interconnected and equipped with built-in IIoT technologies that continually
capture stimuli from the environment. These stimuli are then converted
into information that is circulated and processed rapidly, resulting in an
almost instantaneous self-regulation and adaption to any change, along with
feedback on the origin of the change.

AI systems functioning like ecosystems will foster collaborative infras-
tructure design and sustain innovation, enabling these systems to evolve and
rapidly learn how to evolve. AI systems with collaborating sensors reminis-
cent of such collaborative infrastructure would behave almost organically.

1.4.5 Genetic and Evolutionary Algorithms

Genetic algorithms (GAs) represent a branch of AI searching for a range
of potential solutions to find one which solves a particular problem. GAs
save information about the paths traversed during the search, simulating
an evolutionary process and in this way overcoming known issues such as
inefficient searches, and convergence to local optimums rather than global
optima.

The idea of GAs can be traced back to Alan Turing’s paper from 1950
[26], where concepts derived from natural evolution are used to evolve AI
machines. These include mutation, hereditary material, survival of the fittest,
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and keeping track of the different genetical combinations that have been tried
and tested, to avoid trying the same ones again.

GAs are a subset of a much larger branch of computation known as
evolutionary computation. The main concept behind GAs and evolutionary
algorithms (EAs) is inspired by the natural selection principle in biologi-
cal evolution [27], in which organisms evolve and adapt to thrive in the
surrounding environmental conditions.

According to this principle, new candidates can be produced from a cur-
rent population of individuals using crossover and mutation, which perform
different roles. Mutation is a divergence technique, driving the population
to discover new regions and enlarge the search space. Crossover is a con-
vergence technique, driving the population towards a local optimum. The
fitness of individuals is evaluated against a fitness function related to the
optimisation problem being solved, subsequently the stronger candidates are
selected to breed, the rest are ‘discarded’. Since the ultimate ‘goal’ is to
bring the population to a state of convergence, selection/crossover occur more
frequently than mutation.

This process is iterative, in that the new generation of candidate solutions
becomes the current population in the next iteration. The cycle terminates
after the maximum number of iterations has been executed, or earlier if the
fitness functions reach a satisfactory level. The advantages of GAs include
their relatively simple application to new problems – merely requiring redef-
inition of the fitness function, and they are also effective and scalable, due to
the “survival of the fittest” principle, according to which the unfit candidates
are eliminated during the process.

GAs and EAs have a wide range of applications, such as in robotics,
evolutionary machine learning, generative design applications and evolvable
hardware. For example, GAs can accelerate the NN learning process to solve
a certain problem, by learning the best hyper-parameters. This is illustrated
in Figure 1.8.

Evolvable hardware (EH) is another field focusing on the use of EAs
and GAs to create specialised hardware and electronics without manual
engineering. Although it started out as a branch of electrical engineering
and computer science, EH now brings together reconfigurable hardware, evo-
lutionary computation, fault tolerance, sensors; connectivity and processing
modules; and autonomous systems. In a broader sense, EH refers to any form
of hardware that can change its architecture and behaviour dynamically and
autonomously by interacting with its environment.
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Figure 1.8 Using Genetic Algorithms in the iterative process of fine-tuning NN
hyperparameters.

Regardless of the industry, the generation and testing of different solu-
tions is a critical part of every design process, including generative design.
The generative design algorithm creates and tests different configurations,
diverging to explore a large variety of solutions based on the pre-set require-
ments, and then converging on the best solution. Often such processes are
cyclical/iterative, where initial requirements are adjusted, leading to another
cycle/iteration of generating candidate solutions. Such processes can become
very complex, hence the need for AI systems, such as GAs. Thus, one of
the most powerful benefits of generative design is the speed with which
new candidates can be generated and evaluated because the entire cycle is
automated.

1.4.6 Generative AI

Generative AI is a branch of AI that enable computers to learn underlying
patterns related to their input, which can be text, audio files or images,
and then use these to create similar content [23]. While advances in ML
have mostly been the result of discriminative modelling, the most significant
advances in AI in recent years have been attributed to generative modelling,
not least due to its ability to create new things.

In contrast to discriminative techniques that learn to classify data, gen-
erative AI techniques are mostly involved in creating new data based on
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training data. Discriminative modelling is focussed on learning a function
that maps an input to an output using a labelled data set, a notion synonymous
with supervised learning. Generative modelling is usually performed with an
unlabelled data set, that is, as a form of unsupervised learning.

The differences between discriminative and generative modelling are best
visualised in Figure 1.9. Discriminative models draw boundaries in the data
space, focusing on predicting the data labels, while generative models try to
model how data are placed throughout the space, focussing on explaining how
the data were generated.

There are three main classes of generative AI techniques: general
adversarial networks (GANs), autoregressive convolutional neural networks
(AR-CNN), and transformer-based models.

GANs are a breakthrough, empowering deep networks with the ability to
produce artificial content that passes for the real thing. GANs consist of two
competing components – the generator network, which learns the distribu-
tion of classes, and the discriminator network, which learns the boundaries
between those classes. Each network can be any type of neural network,
such as artificial neural network (ANN). The discriminator must have fully
connected layers with a classifier at the end.

GANs are the cutting-edge technology of AI, not least due to two essential
key advantages: they solve the problem of generating data when there is not
enough to start with, and they require no human supervision.

One of the practical applications of GANs can be seen in anomaly
detection. Anomaly detection is known for identifying signal behaviours that

Figure 1.9 Discriminative (left) vs Generative (right) Models in ML.
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do not fit the normal patterns and which can be addressed as a supervised
learning problem. Depending on the application, this may require large,
labelled data sets. However, in many industrial applications, samples from
abnormal class may be insufficient for effective modelling. This is a challenge
that can be addressed by another approach, using GANs (i.e., training only on
samples considered ‘normal’ and then identifying the unusual, insufficiently
available samples (abnormal) that differ from the learned sample distribution
of normal).

An example of the network architecture of the generator and discriminator
based on deep convolutional GAN is shown in Figure 1.10. In the training
stage, only normal samples are involved. In the testing stage, abnormal
samples can be discriminated by a higher anomaly score. The generator is
trained only using the extracted features from normal samples. Anomaly
scores are designed for anomaly detection.

Another practical application is GAN-based robotics control. Genera-
tive modelling helps reinforce ML models, so they are less biased and
comprehend more abstract concepts, both in simulations and the real world.

GANs generate data that are like real data; therefore, they are widely
used in industrial applications. They also have advantages over methods of
supervised and unsupervised learning. A GAN is a semi-supervised learning

Figure 1.10 Network architecture of generator and discriminator based on deep convolu-
tional GAN. Adapted from [24].



1.4 AI Problem Solving Domains 27

framework that uses manually labelled training data for supervised learning
and unlabelled data for unsupervised learning to build models that can make
predictions beyond the labelled data by leveraging the same.

The other two classes of generative AI techniques are AR-CNN and
Transformer-based models. AR-CNN are used to examine systems that
evolve, predicting future outcomes of a sequence from the previously
observed results of that sequence. They rely on previous time-series data
to generate accurate new data as an autoregressive model is a feed-forward
model which predicts future values from past values. Transformer-based
models are used to analyse data with a sequential structure and have become
a standard tool for processing sequential input data, such as natural language.
Core to their architecture is the ability to identify and learn context within an
input sequence and thus refine the meaning of the other part of the sequence
(the so-called attention mechanism).

1.4.7 Artificial Swarm Intelligence

Swarm intelligence is a branch of AI that is based on an extrinsic type of
intelligence inspired from nature and biological systems and is connected to
collective behaviour of decentralized and self-organised systems.

Swarm intelligence systems typically consist of many independent but
similar individuals that follow very simple rules without a centralised control
system. These systems’ overall behaviour is a result of the interactions of the
individuals, with each other and with their environment, but globally they act
quite intelligently.

For example, ant colonies can optimise routes and shortest paths, and
bee colonies can find the location of their nest in an extremely efficient
manner. Swarm logic is a behaviour demonstrated by many animals, and
while each individual is less capable of independently making decisions or
solving problems, in a swarm they communicate, coordinate, organize, and
seemingly problem solve, seemingly without a central command.

The essence of swarm logic is the sharing of information, along with inter-
action with other individuals and the surroundings, to derive new information
as a basis for global actions. Adopting a broader perspective, swarm intelli-
gence is the action of having decentralised agents swarm collectively towards
a goal. These agents can be ants, bees, cars, robots, among other things. An
IIoT system can be seen as multiple agents, where the intelligence lies both
within agents and in their interaction with each other.
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Figure 1.11 Swarm intelligence visualized: population of agents searching for a destination
(left) and search space represented by a nonlinear regression generated surface (right).

Figure 1.11. intuitively illustrates the concept behind swarm intelligence,
the starting point of which is a population of agents (like birds or bees)
searching for a destination (left). Complicated intelligent behaviour to solve
complex tasks emerges from simple agents following simple rules such as
keeping diverging trajectories, avoiding collisions and interaction with near
neighbours (rule is known as self-organization). These agents will simultane-
ously know when the destination is reached, based on the goal parameters of
the destination. Swarm intelligence’s aim is to optimise the goal parameters
and minimise the search space, represented by a surface generated using
nonlinear regression (right).

1.4.8 Natural Language Processing

Natural language processing (NLP) is a branch of AI that focuses on devel-
oping algorithms to enable computers to understand speech and text. NLP
systems are developed to imitate the human capacity to use language. NLP is
used in a variety of tasks, including text understanding, text summarization,
information extraction, machine translation, and speech recognition and syn-
thesis. Examples of AI techniques include support vector machine (SVM), for
text classification (such as spam detection); hidden Markov models (HMMs)
for speech or text generation; neural networks, for machine translation; and
logic-based methods, for text summarisation.

NLP technology has made major progress in recent years, leading to the
development of network architectures better able to learn from complex and
context-sensitive data. These advances have been supported by the constantly
increasing data resources from intelligent sensors and computing power.

Current challenges include obtaining quality data and detecting and
removing data biases. Future applications are expected to meet these
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challenges, as well as to improve human–AI interactions across diverse
languages and situations.

NLP is too computationally expensive to run on microcontrollers, so
applications running on edge devices are often limited to looking for key-
words in speech, such as short commands for executing some actions.
Identifying non-voice sounds is also extremely useful. NLP based on embed-
ded machine learning will make edge devices more intelligent in future
applications.

1.4.9 Machine Learning

Machine learning is a branch of AI that provide systems with the ability
to automatically learn and improve their performance in some tasks through
experience without being explicitly programmed. The rules of ML programs
are not determined in the same way as those of normal computer programs
are; instead, ML uses specialised algorithms to learn rules from data, in a
process known as training.

This training process starts with feeding data and then training the
machines by building various models using different algorithms. The choice
of algorithms depends on the kind of task we are attempting to automate.
Most ML tasks are narrowly specified to optimise specific functions using
particular data set.

Inference is the process of taking a trained model and deploying it into
a device, which will then process incoming data to look for and identify
whatever it has been trained to recognise.

During the inferencing phase, predictions and decisions are made con-
cerning new data, based on the learned parameters. Prediction is the process
of using a model to make a prediction about something that has yet to happen.
Inference is the process of evaluating the relationship between the predictor
and response variables.

DL and neural networks are examples ofML techniques frequently used
today. DL systems learn from large amounts of data to subsequently recognise
and classify related, but previously unobserved, data. For example, neural
networks, often described as being loosely modelled after the human brain,
consist of thousands or millions of processing nodes generally organised
into layers. Advances in hardware have allowed these networks to have
many layers, which is what puts the “deep” in deep learning. What differ-
entiates DL from ML techniques is the former’s ability to extract features
automatically.
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Humans and machines both acquire knowledge in the process of learning
based on experience; however, the former do so based on either direct or
shared experience, while the latter do so through experience shared in the
form of past data. With respect to which input data an ML process receives
and how it handles this data, three types of ML training methods can be
distinguished: supervised (labelled data required), unsupervised (no labelled
data; these attempt to discover patterns) and reinforcement learning (actions
taken to maximise cumulative rewards).

Supervised-learning algorithms learn from labelled input data and are
widely used for classification and regression tasks. The system learns which
components of the data are useful for classifying it correctly and uses that
information to correctly classify data it has not encountered before. Such
algorithms can also detect patterns in data and then use the uncovered
patterns to predict future data or other outcomes of interest. By contrast,
unsupervised-learning algorithms seek to discover hidden patterns and other
underlying structures in unlabelled data and are used in clustering tasks.

Reinforcement learning algorithms enable computer programs to learn from
experience and to be rewarded for reaching specified objectives – both
immediate actions and long-term goals. Reinforcement learning is akin to
how humans learn from their own mistakes over time through trial and error.
This means that the algorithm decides the next action by learning behaviours
that are based on its current state and that will maximise the reward in the
future.

More detailed description of the learning algorithms can be found in
Section 1.8.1.

1.4.10 Neural Networks

This section presents a high-level overview of neural networks (NNs) thus
providing a valuable and intuitive understanding of how the models work
when deployed in edge devices and operated within industrial settings.

Neural networks simulate the learning capacity of biological neurons in
the human brain. The fundamental unit of a neural network is a perceptron
(Figure 1.12).

The perceptron model multiplies all inputs with a weight parameter,
whose value is representative of how important each feature is in the cal-
culation of the results. The resulting values are added together with a bias
term, resulting in the so-called weighted sum, on which an activation function
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Figure 1.12 Perceptron illustration.

is finally applied. The activation functions introduce non-linearity in NN
models, thus differentiating them from linear regression models.

During training, model parameters are gradually calibrated so that the
NN output comes increasingly nearer to the desired one, when given a certain
input. A loss function keeps track of how far the model is from predicting the
correct output, meaning that the higher the loss value, the less efficient the
model is at predicting. Accuracy is another metric, inversely proportional to
the loss.

Anyone interested in more detailed reading regarding training is directed
to [4][8] and other sources. Generally, the first step is to forward feed one
signal sample or a batch of samples through the network. Feedforward is the
process of passing input values, through the hierarchical layering of neurons,
to produce an output in the final layer. Network loss is then calculated by
comparing the predictions with the actual outputs and this is then used to
update the model’s parameters in the next step known as backpropagation.
Backpropagation is the process by which the error contribution of each
neuron is calculated and passed backwards through the network. The weights
and biases are adjusted proportionally to this error contribution, and this is
how the machine learns.

This stepwise procedure is run several times with the aim of improving
the output of feedforward, ultimately optimising the network’s predictions.
One feedforward and backward pass is called an iteration, while a pass
of the entire data set is called an epoch. After each epoch, the algorithm
will perform a forward pass of each validation sample, looking at loss and
accuracy. Usually, accuracy improves over time as loss drops.

The number of epochs and the learning rate, i.e., how much the model’s
internal parameters are updated during each training step, are known as
hyperparameters, and can be configured to make a model more efficient.
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1.4.11 Automated Planning and Plan Recognition

Automated planning is a branch of AI that concerns providing goal-oriented,
deliberative behaviour to both physical and virtual intelligent agents [29]. It
takes as inputs a planning domain, an initial state and a goal, and it employs
optimisation algorithms to return a sequence of actions that guides the agent’s
behaviour. The correct representation of states, conditions and actions and
the suitable algorithms all contribute to the agent reaching its goals and
optimising performance.

In many industries, automation is an emergent trend that requires efficient
automated planning, such as robotic and autonomous systems. Mobile and
fixed robotic systems can perform various tasks in the industrial application
domain without the need to acquire knowledge, relying on only the accu-
racy of the model. The model encompasses explicitly represented domain
knowledge acquired from human experts.

Incorporating AI capabilities in automated production planning in manu-
facturing also has significant potential. Embedded industrial AI optimisation

Figure 1.13 Automated planning, states, and actions.
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algorithms can balance the product result and the resources used during
production and can learn by collecting considerable amounts of “cause and
effect” data that can be used for what-if simulations and analysis.

Embedded edge AI solutions for path planning for swarms in mobile
autonomous systems are evolving, and they have been applied in several
manufacturing optimisation and logistics applications. Swarm automated
planning algorithms are used as planning methods based on planning graph
technology to improve the searching efficiency using swarm intelligence in
fleets of autonomous devices operating on the manufacturing floor.

AI planning techniques are widely used when explainability is neces-
sary, i.e. the planner can explain why a specific course of action has been
chosen.

On the downside, there are some challenges to AI planning techniques
when they are employed in real-time applications, due to slow response time.
The more complex the planning domain, the larger the search space becomes,
thus increasing the response time to find a proper sequence of actions. This is
especially critical when planning and acting are intertwined.

An alternative to acquiring knowledge from human experts is to learn
the model in time. Architectures relying on ML have the advantage of not
requiring much prior knowledge about the domain; once trained, they act
quickly. Nevertheless, they need a large amount of data for the training. They
are usually limited to the industrial application domain they were trained for
and presenting them with new situations might be challenging.

The two approaches can be incorporated into the same agent architecture,
thus achieving better trade-offs than if only one approach were used. More
about the synergistic benefits of combining symbolic AI andML can be found
in Section 1.6.

Plan recognition deals with inferring the goals or plans that explain
the observed actions of an agent; as such, it is considered the opposite of
planning. Plan recognition algorithms require knowledge about the potential
behaviours of the agent and how the agent makes its decisions. When this
knowledge is unavailable, neural networks can be employed to learn the
decision model automatically.

1.4.12 AI for the Metaverse

Metaverse is a term formed by combining meta and universe and has been
introduced as a shared virtual world that is fuelled by many emerging tech-
nologies, such as virtual reality, and AI. AI has shown the great importance
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Figure 1.14 Application of Metaverse.

of processing large amounts of data to enhance immersive experience and
enable human-like intelligence of virtual agents.

ML algorithms, DL architectures and other emerging technologies such
as swarm intelligence have had a role in the foundation and development of
the metaverse, such as AR, VR, mixed reality (MR). These are now ready to
be employed in applications such as machine vision, blockchain, networking,
digital twin, and in different industrial applications (Figure 1.14).

1.5 Edge AI Continuum

Edge processing can redefine the landscape of interconnected devices by
moving data processing and analytics to the edge and employing AI tech-
niques and embedded security. Edge AI computing and processing allow for
the development of new real-time applications due to the processing being
performed close to the data source. It can reduce the amount of transmitted
data by transforming extensive amounts of raw data into essential insight data.
It can also decrease communication bandwidth and data storage requirements
while reducing energy consumption and increasing security, privacy, and data
protection.
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Edge AI technology developments are used to implement applications
that benefit from AI-based technology advances across the edge continuum.

Various forms of AI have already been adopted by multiple industries,
governments, and society. However, a breakthrough is needed in several
industrial sectors to bring the intelligence close to the data source and imple-
ment it in industrial processes. However, this breakthrough may face several
hurdles that challenge its advancement.

Leveraging AI methods and techniques at the edge is essential for increas-
ing the performance and capabilities of the intelligent sensor systems and
IIoT devices used in various industrial applications. The edge AI processing
concept is reflected in the emergence of micro-, deep-, and meta-edge layers
for several industrial intelligent applications.

The edge processing continuum includes sensing, processing, and com-
munication units close to physical industrial assets (micro edge), gate-
ways and intelligent controller processing (deep edge), and on-premises
multi-use computing (meta edge). This computing continuum creates a
multi-level structure that advances processing, intelligence, and connectivity
capabilities.

The edge AI processing concept for intelligent applications is mir-
rored in the development of different edge-processing levels. Figure 1.15
shows an all-encompassing edge AI architecture incorporating the computing

Figure 1.15 Edge AI Architecture.
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and intelligence continuum from sensors and actuators, processing, units,
controllers, gateways, and on-premises servers to multi-access, fog, to cloud
computing interfaces.

Edge AI computing and processing device functions cover edge com-
puting, communication, and data analytics capabilities, which make it
smart/intelligent. An edge AI computing and processing device is designed
around the computing units (CPUs, GPUs, FPGAs, application specific
integrated circuits (ASICs), AI accelerators/processing), communication net-
works, storage infrastructures, and applications (workloads) that run on
it. Single- and multi-core microcontrollers (MCUs) are based on ARM
Cortex-M cores or on cores using new open-source RISC-V instruction set
architecture (ISA) and high-performance embedded processors with varying
capabilities. The memory footprint, computing time, transmission, and power
consumption requirements always depend on whether the device operates at
the micro, deep, or meta edge. ML and DL models need to be converted into
efficient formats before compiling and flashing them into edge devices.

AI building blocks are optimised for the type of processor, the amount
of RAM, and the number and types of sensors. The solutions are usually
provided as a C library, which can be embedded into the main microcontroller
program and compiled and downloaded into the embedded system.

The edge can scale from a few devices to tens of thousands of devices
distributed in various locations with unique identities. Edge AI computing
and processing devices are physically separated, yet they can be connected
by wireless/wired topology connections, such as mesh topologies. Edge
AI computing and processing devices can operate independently, and local
decisions can be supported by inference actions, including the unexplored
evolution of training on edge devices.

AI models increase various potential industrial applications; however,
developing AI functionalities for the edge continuum is complex and presents
several challenges, such as scalability, interoperability, and performance
optimisation versus the resource constraints of the edge devices. Overall,
implementing AI models on edge-embedded devices has advantages for
different use cases and applications in various industrial sectors.

A key element for the transition of AI processing to the edge is the
capabilities of the developer edge environment, covering the hardware, inter-
faces, platforms, training/learning, applications, and services. The intelligent
infrastructure at the edge refers to the tools, platforms, and techniques used
to run store data, build, and train AI/ ML algorithms, and the algorithms
themselves.
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Micro-edge

The micro edge includes intelligent sensor systems (physical, chemical,
environmental parameters, perception, etc.) with processing and connec-
tivity capabilities that use IIoT devices that generate insight data and
analytics. Micro-edge devices are implemented using microcontrollers built
around ARM Cortex M0, M0+, M3, M4, M7X, ASICs and RISC V. The
distance from the data source (sensors) is minimised, and the micro-edge
devices have cost and power consumption constraints. Micro-edge hardware
devices implement analytics and intelligent functions by integrating AI-based
components and algorithms and running the AI algorithms for inference,
training, and self-training. The intelligent micro edge makes IIoT real-time
applications ubiquitous and merges them with the industrial environment.

Deep-edge

The deep edge comprises intelligent controllers, PLCs, SCADA elements,
connected machine vision systems, networking equipment, gateways, and
computing units that aggregate data from the sensors/actuators and IIoT
devices. Deep-edge processing capabilities are implemented with perfor-
mant processors and microcontrollers, such as Intel i-series, Atom, ARM
Cortex M7+, etc., including CPUs, GPUs, TPUs, FPGAs and ASICs. The
system architecture, including the deep edge, relies on foreseen functionality
and deployment options. These functions include cognitive capabilities that
can acquire, aggregate, understand, react to data, exchange, and distribute
information.

Meta-edge

The meta edge integrates processing units, typically on-premises, imple-
mented with high-performance embedded computing units, edge machine
vision systems, and edge servers (e.g., high-performance CPUs, GPUs,
FPGAs, etc.), which are designed to handle compute-intensive tasks (e.g.,
data series, image, and video processing), advanced analytics, AI-based
functions, networking, and data storage.

Fog computing extends the computing capabilities of meta-edge indus-
trial systems and interfaces cloud computing capabilities with the edge of the
network. Fog computing enables repeatable structures in the edge computing
concept, so enterprises can push computing out of centralised systems or
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clouds for a better and more scalable performance. A Fog computing imple-
mentation is a virtualised platform located between cloud data centres (hosted
within the Internet) and meta-edge that provides support for edge processing
and is complementary to cloud computing platforms.

1.6 Symbolic AI – ML Continuum

Human intelligence comes in two distinct but complementary forms of arriv-
ing at conclusions, one based on structured and rational decisions and the
other on perception and understanding patterns. Machine intelligence also
comes in two similar forms, one based on symbolic knowledge representation
and reasoning (the symbolic AI approach) and the other on deep learning and
the interpretation of data patterns (the ML approach).

Therefore, when faced with an AI problem, one can look for a solution
combining technologies in the symbolic AI – ML/DL continuum, instead of
choosing between the symbolic or ML/DL approach in solving it. Neverthe-
less, it is essential to understand the difference between and the advantages
and disadvantages of these two approaches.

Generally, the symbolic AI approach is suitable when the AI problem is
abstract, no large amounts of data about the AI problem are available (for
example, data coming from sensors, such as images, sounds, etc.) but the
steps to the solution are commonly known so that this knowledge can be
modelled explicitly.

On the contrary, ML is useful when the steps to the solution are not
known, but the large amount of data allows us to look for larger patterns,
which may ultimately lead to the likely solution. This approach requires
several iterations and massive computational power to arrive at a conclu-
sion. Nevertheless, as computing hardware becomes faster and cheaper and
ML algorithms become more powerful, ML becomes more inclusive (i.e.,
available not only to actors with strong computational resources).

The concept is easier to grasp if we consider a simple use case of the
automated diagnosis of a malfunctioning motor problem. In the case of sym-
bolic AI approaches, this would require that a human expert fully describe
the motor and its features, functioning and malfunctioning situations. This
knowledge would then be represented in a form that could be processed by
machines. With the help of algorithms and step-by-step inferences from this
knowledge base, it is possible to arrive at a diagnostic for the motor problem
when fed real-time sensor data.
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The advantage of this approach is that it does not rely on massive data
and might work for most motors. However, the knowledge base takes time
to acquire and set up, and if some knowledge (about a particular motor) is
missing or incomplete, it will yield no result.

The ML approach would be to feed a neural network with many sig-
nals/data of the motor, vibration data and audio data in both functioning
and malfunctioning situations. The trained network would then be able to
accurately guess the motor diagnosis when fed real-time sensor data. The
advantage of this approach is that it does not rely on a motor expert’s
knowledge to be made explicit, and it allows for automation due to its ability
to handle large amounts of real-time sensor data.

It is technologically possible to combine symbolic AI and ML, for exam-
ple, by using symbolic AI to generate answers (constraints) and then feeding
these answers to ML to generate predictions. A balance between the two can
be achieved based on experimentation.

In short, with symbolic AI, the rules of the AI algorithms are decided by a
human. These rules and some data are provided as input to the AI algorithms,
and data are processed according to these rules to produce answers in the
output. With ML, on the other hand, the inputs to the ML algorithms during
the training process include some data and answers, while the rules are the
output. These rules are then used during inference to produce predictions
about input data that have not been seen before (i.e., data that was not part of
the training).

Therefore, AI can also be understood from the perspective of combining
technologies in the symbolic AI – ML continuum and balancing them to
achieve better trade-offs than otherwise achieved if only one technology were
used.

1.7 Logic-based AI: Knowledge Representation
and Reasoning

As full-scale AI applications increase in number and complexity, accelerating
digital innovation across industries and boosting productivity, so does the
need for AI to be more comprehensible, explainable, and therefore trustwor-
thy. Thus, symbolic approaches to classical AI are re-gaining momentum.
This section summarises some of the logic-based approaches that are likely
to be adopted by various industrial sectors and discuss future perspectives for
exploiting logic-based technologies.
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Figure 1.16 Knowledge representation.

Intelligent machines require knowledge to make intelligent decisions, the
same way as humans do. This usually entails that expert knowledge need
to be acquired and represented in a form that machines can process, called
a knowledge base. Predicate logic and propositional logic are representative
ways to reflect knowledge; semantic networks, rules, frames, or programming
languages are also good examples (Figure 1.16). Languages that are designed
specifically for AI include LISP and Prolog.

A knowledge representation should have specific properties, for example
be unambiguous, easy to use, inferential adequate and efficient, and able to
represent all types of knowledge: declarative, procedural, heuristic, struc-
tural, meta-knowledge (Figure 1.17). The choice of knowledge representation
method largely depends on the problem to solve.

Inference is a term representing the derivation of new knowledge from
existing knowledge and axioms (i.e., rules of derivation) within a single step,
using logical constructions. The rule of derivation can be one of many kinds,
such as, induction, deduction, and abduction. Modus ponens (if A is true, then
B is true. A is true. therefore, B is true) and modus tollens (if A is true, then
B is true. B is not true. therefore, A is not true) are two such logical argument
constructions.

Reasoning is a term used in the context of a goal (e.g., proof whether a
propositional statement is satisfiable or not) and is carried out via a search
process involving multiple inferences. Choices during such search have to be
made such as which axiom to “fire” along with which knowledge in order to
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Figure 1.17 Type of knowledge.

derive new knowledge. Resolution is a particular kind of reasoning involving
the “resolution rule”.

Reasoning from premises to logical consequences, have been a major part
of AI since its beginnings. Inferences are steps in reasoning, moving from
premises to logical consequences. One motivation behind is the utilization of
knowledge of a domain for obtaining answers for given problems. In this case
knowledge must be available in a formal form like propositional or first-order
logic. Reasoning and mechanical theorem proving is used for computing
an answer using the formalized knowledge directly. It is worth noting that
this kind of application of logic comes with several advantages, i.e., making
knowledge explicit (and thus understandable for humans), allowing to use
the same knowledge for various problems, and allowing to explain solutions
based on knowledge. On the downside, logical theorem proving requires high
computational resources, but which are widely available today.

For more information about the foundations of logic (and in particular
propositional and first-order logic) we refer the interested reader to [8] (with
the direct context to AI).

To solve this problem, other classes of (non-monotonic) logic has been
proposed like default logic [15], and abduction, which is also non-monotonic.
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In the past decades, research in non-monotonic logics and their applications
has been a very active part of AI. This includes model-based reasoning
[17][18] with a strong relationship to default logic, and also more recently
answer set programming (ASP) [19]. All these inference mechanisms can
be used to solve practical challenges, like diagnosis and fail-operational
behaviour. More about these topics and reasoning from first principles for
self-adaptive and autonomous systems can be found in [20].

Logical inference has been an active research area of AI since its begin-
nings, ranging from expert systems to more recent developments on non-
monotonic inference. Due to the increased available computational power
and the availability of efficient reasoning and inference engines the direct
use of knowledge formalized in ontologies and knowledge bases for solving
various tasks can be achieved. Recent work describing a mapping from neural
networks to a logical representation can be found in [21][22].

1.8 Hardware/Software Technology Stack

Technology stacks are widely used to structure technologies in a particular
area. AI is no exception, as it is possible to conceptualise AI as a technology
stack with various layers. A five-layer stack is presented in Figure 1.18.

During the past decades, the focus has moved back and forth between
logic (symbolic reasoning) and pattern recognition (neural networks), driven
by the varying abilities of technologies to acquire data, learn, derive new
information and reason to reach decisions. In the last years, machine learning
and neural network models have been the primary focus due to advances in
hardware development and processing capabilities. Hence, the technology
stack is illustrated by machine and deep learning, covering topics such as
learning/training and inference.

The foundation of the stack is represented by the hardware layer, which
contains at least three sets of components that reflect the processing units
responsible for performing specialised AI operations. The neuromorphic
hardware components consist of new ultra-low-power silicon chip architec-
tures (e.g., neuromorphic modules and chips, analogue NN, spike NN) that
incorporate different chip designs and algorithms to mimic how the human
brain works. The accelerator set of components consists of silicon chips
designed to perform the highly parallel functions required during training
and inference, such as GPUs, FPGAs, or ASICs. The head node components
are units that coordinate computations among accelerators.
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Figure 1.18 Five-layer (with sublayers) AI technology stack.

The platforms layer is used for AI andML/DL deployment and consists of
three sublayers, the goal of which is to abstract firmware from the underlying
hardware. The frameworks sublayer consists of packages that trigger HW
algorithms, such as Caffe, Torch, Theano, etc. This happens through the
interface layer, which connects the hardware and platform layers and is in
charge of facilitating communication between them. The algorithms sublayer
consists of rules to achieve optimal inference according to the training method
employed, such as backpropagation, evolutionary, and contrasted divergence.
The architectures sublayer consists of many continuously evolving neural
network architectures, such as CNN, RNN, etc.

The AI training/learning layer consists of two sublayers. The methods
sublayer involves techniques for optimising the model for specific domain
data, such as supervised, unsupervised and reinforcement learning. The data
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type sublayer consists of categories of domain input data, such as labelled
and unlabelled data.

Finally, the applications and services layer incorporate ready-to-use AI
functionality into solutions to real industry problems and use cases, such as
autonomous vehicles and object recognition. The solutions can be customised
based on generic data or on customer-specific training data.

The AI technology stack provides a common understanding of the AI
layers and components when implementing and benchmarking various AI
technologies and applications. The elements presented in the different sec-
tions - spectrum, continuums, methods, techniques, concepts, and others - are
all connected through the AI technology stack defined by European projects
such as AI4DI [3].

This section briefly introduces the industry-adoptedML terms and theML
methods such as supervised, unsupervised, and reinforcement learning, and
neural networks architectures. Specifically, the focus is on embedded ML, for
which the advances in hardware architectures opened an entirely new space
of applications and opportunities. The new hardware architectures make
possible to run complex ML workloads on microcontrollers, with limited
compute and memory profiles.

1.8.1 ML Methods and Techniques

There are a multitude of methods and techniques that depend on the type of
learning, and the type of learning – supervised, unsupervised, or reinforce-
ment depends on the data available for the application. A taxonomy is shown
in Figure 1.19.

Supervised Machine Learning

Supervised learning algorithms learn from a training set of data that is
labelled with the correct description; the system subsequently learns which
components of the data are useful for classifying it correctly and uses that
information to correctly classify data it has never encountered before. These
algorithms are widely used for classification and regression tasks, as detailed
below.

Regression is considered the fundamental ML paradigm. The process of
regression connects outputs to inputs. It shows an output for a given input,
and the regression component creates a transfer function to best fit that
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Figure 1.19 ML taxonomy.

Figure 1.20 Regression visualized 2D (left), 3D (right).

data. This transfer function then provides a method to predict an output for
an untested input. In other words, if the independent variable is time, then
the model forecasts future values; otherwise, the model predicts present but
unknown values. Typically, when selecting a regression strategy, the number
and type of inputs and the type of transfer functions need to be considered.
The transfer functions can be represented as curves (Figure 1.20 left) and
surfaces (Figure 1.20 right).

There is a wide variety of regression strategies employed in industrial
applications such as simple linear regression, polynomial regression, logistic
regression, support vector for regression (SVR), decision tree regression,
random forest regression. Figure 1.21 shows an example of logistic regression
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Figure 1.21 Normal(blue) - abnormal(red) (left). Predicted values using logistic regression
(right).

that predicts a binary outcome, such as normal or abnormal, based on
observations of the data set, which could be motor vibration measurements.
The large dots are the learning data, while the small dots are the data to test
against learning data.

Classification addresses the problem of determining the class that a given
data instance belongs to. It requires more input, i.e., training data must be
provided for the definition of classes. The more training, the more accurate
the classification algorithm. Given sufficient training data, classification tools
can distinguish between classes as well as or better than humans.

Many of the most powerful applications of ML are classification systems.
Neural networks based on the layered architecture of biological brains have
emerged as a common classification technique because they are able to group
explicit, visible features into abstract or inferred features that correlate closely
to the predefined classes in the training data.

Classification methods are widely used in machine vision with the clas-
sification of images, e.g., to determine whether an image contains specific
objects. Another example is with time series, e.g., motor classification in
predictive maintenance. Among their other benefits, classification tools can
extend automation to incorporate the ability to differentiate inputs auto-
matically, alleviating one of the most time-consuming manual steps in the
generative-design workflow.

The intuitive images in Figure 1.22 show how the two classification and
regression can be distinguished. Regression searches for a line or plane that
fits the given input points, while classification searches for a line or surface
to separate the classes.
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Figure 1.22 Classification (left) vs Regression (right)

Unsupervised Machine Learning

In contrast to supervised learning, unsupervised learning algorithms search
for underlying structures in unlabelled data. Unsupervised learning is where
there is only input data and no corresponding output variables. The goal for
unsupervised learning is to model the underlying structure or distribution in
the data to learn more about the data. These algorithms are widely used for
clustering and dimension reduction tasks, as detailed below.

Clustering is one of the most flexible techniques in ML: it is easy to apply
and requires no sample data or predetermined classifications. Clustering
algorithms group together data with similar characteristics without any prior
training or guidance on how to distinguish between groups. This is very
powerful precisely because it is so flexible. The raw data and the number
of groups are given as inputs, and the clusters are generated as outputs. K-
means is one of the most used methods for clustering, where K is the number
of clusters to be created. In short, the algorithm places the centres of the
K clusters in the data set, assigns the closest points to the K cluster and
recalculates the centre of the cluster iteratively. Another powerful clustering
algorithm is the Gaussian mixture models (example in Figure 1.23). The
better the data describes different features within the data, the better or likelier
the grouping result.

Clustering is powerful in its flexibility and simplicity. Often, clustering
is the starting point when organising poorly structured data or sorting con-
tinuous data into useful groups. On the downside, the results are difficult to
control precisely and depend on the resolution of the input data.

Dimension reduction is used to simplify the model by removing the less
important or redundant information from the data set to make it manage-
able while maintaining relevance and performance. Data sets can sometimes
have hundreds of features, and by extracting fewer independent features, the
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Figure 1.23 Cluster (Gaussian mixture models) 4 clusters (left) vs 2 clusters (right).

Figure 1.24 Principal component analysis. Intuitive visualisation, select variables that
capture the largest variability in data.

complexity of the model can be greatly reduced. The most used algorithm is
Principal Component Analysis (PCA), which finds new vectors that maximise
the linear variation of the data by drastically reducing the size of the data
without losing too much information (Figure 1.24). Another commonly used
method is t-Stochastic Neighbour Embedding (t-SNE), used for automatic
learning by reducing the space of functions.

There are two types of dimensionality reduction techniques: feature
selection and feature extraction. Feature selection techniques are backward
elimination, forward selection, bidirectional elimination, score comparison
and more. Feature extraction techniques are, Principal Component Anal-
ysis (PCA), Linear Discriminant Analysis (LDA), Kernel PCA, Quadratic
Discriminant Analysis (QDA).

Reinforcement Learning

Reinforcement learning (RL) enables computer programs to learn from expe-
rience by trial and error and to be rewarded for reaching specified objectives
– both immediate actions and long-term goals. The two main components are
the environment, which represents the problem to be solved, and the agent,
which represents the learning algorithm.
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Different from other ML approaches is RL’s emphasis on simulated
motivation and learning from direct interaction with humans and the envi-
ronment, without requiring explicit examples and models. RL is akin to how
humans learn from their own mistakes over time through trial and error.
This means that the algorithm decides the next action by learning behaviours
that are based on its current state and that will maximise the reward in the
future. RL shifts the focus of machine learning (ML) from pattern recogni-
tion to experienced-based sequential decision-making and execution. Many
applications in robotics and machine vision use RL to perform tasks.

One of the core concepts in RL is the Q-Learning, which is about learning
an action-value function, representing the measure of the overall expected
reward assuming the agent performs the action. A simple data structure such
as a table can be used to keep track of the states, actions, and their expected
rewards. In case of an infinite state space, this function is implemented with
DNNs, hence the term deep Q-learning illustrated in Figure 1.25.

Deep RL has demonstrated great potential for addressing the challenges
of real-time decision-making based on information captured by sensors. The
increased complexity of sensor-intensive systems with expensive subsystems
and costly repairs requires efficient real-time control and decision-making

Figure 1.25 Q-Learning vs Deep Q-Learning.
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approaches. Thus, many research efforts have recently been devoted to
applying deep RL to the field of predictive maintenance [28].

1.8.2 Neural Networks Architectures

An artificial neural network (ANN) encompasses any form of a DLmodel and
can have one hidden layer connecting the input and the output. DL is a class of
machine learning algorithms that uses multiple stacked layers of processing
nodes to learn high-level representations from data, such as images, audio,
and text. ANN can have many hidden layers, in which case they are called
“deep”, hence the term deep neural network (DNN). By adding more hidden
layers, the model gets more parameters, which in turn allows the model to fit
more complex functions.

A DNN consists of a series of stacked layers, and each layer is made up
of nodes that are connected to the previous layer’s nodes through a set of
weights. By stacking layers, the nodes in each subsequent layer can represent
increasingly sophisticated aspects of the original input. Understanding how
each layer changes the shape of the data as it flows through the network is
a key aspect of truly understanding the mechanics of DL. There are many
different types of layers, but one of the most common layers is the dense
layer that connects all units in the layer directly to every unit in the previous
layer.

The DNN architecture is forward in nature, i.e., the information does not
shift between two consecutive layers, i.e., the layers give no feedback to the
previous layers. A feed forward neural network (FFNN) is the most basic type
of multi-layer NN, and as the name suggests, information is passed in the
forward direction. Data flows from the input layer to the output layer without
going backwards, and the links between the layers move one way, which is in
the forward direction. FFNNs are the foundations of deep networks, such as
CNN and RNN. Other architectures include LSTMs.

CNN is an FFNN that is generally used for image/object recognition
and classification and for other complex classification problems, such as
predictive maintenance. CNNs can extract the local features of the input data
and combine them layer by layer to generate high-level features. As illustrated
in Figure 1.26, a typical CNN has two phases. The first phase is a series of
convolutions of layers, usually followed by pooling layers, while the second
phase is a series of dense layers. CNNs can be used for deep learning with
a few parameters; thus, there are fewer parameters to learn as compared to
dense layers.
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Figure 1.26 Typical CNN architecture.

RNN is the time-series version of an FFNN. It has connections between
passes and through time. The connections form a directed graph along a
sequence of features that link one layer to previous layers, allowing infor-
mation to flow back into the previous parts of the network. Thus, each model
in the layers depends on past events, allowing information to persist. The key
idea behind RNN is to share parameters over time so that decisions can be
made at each point in a sequence of events about what has happened so far in
the sequence. In short, it ends up with a network that has a relatively simple
repeating pattern, with part of the classifier connecting to the input at each
time step and another part, called the recurrent connection, connecting you to
the past at each step, as shown in the following Figure 1.27. On the downside,
training RNNs can often be a challenging task due to their memory associated
with the recurrent aspect (i.e. signals travel both forward and back and may
contain loops, thus adding to their complexity).

Figure 1.27 The repeating module underlying RNN architecture.
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Figure 1.28 Example of an architecture useful for fault diagnosis. Adapted from [28].

LSTM is a type of RNN that, in addition to standards cells, also includes
memory cells that can retain information for long periods of time. The
enhanced architecture allows LSTMs to learn about long-term dependencies,
which makes them smart at remembering things that have happened in the
past and finding patterns across time.

Deep architectures are continuously evolving. Thus, the number of indus-
trial applications in which DL is employed has grown steadily over the last
decade. Many reported architectures have proven their superior ability in
specific tasks, such as fault classification and fault prediction. An example
of an architecture useful for fault diagnosis is shown in Figure 1.28.

It uses source domain-labelled data sets (such as vibration signals) to
pre-train a CNN model, and a discriminator with two independent classifiers
(fully connected layers) to optimize the CNN-based feature extractor param-
eters by minimizing distributions between the source and target domains.

1.8.3 Industrial Embedded AI/ML

Embedded AI is the application of AI at the embedded device level. While
there are many examples of intelligent devices in the consumer space,
embedded AI may have far higher potential in industrial applications. There
are many contexts in which embedded AI may be very useful for collecting
and understanding important phenomena in industrial settings, right where
the sensors are located.
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Embedded ML is the field of ML when applied to embedded systems
such as microcontrollers. An embedded system is a combination of computer
hardware and software, and additional parts, either mechanical or electronic,
designed to perform a dedicated function.

The trend has been to connect the embedded devices via the Internet,
collect the data and run the inference on servers in the cloud. However,
according to the demand of the industry, the processing is moving from
the cloud to the edge by using embedded ML, where lots of application
can be designed having features of low cost, low power consumption, low
bandwidth, secure and intelligent processing.

EmbeddedML and DL techniques enable electronic systems to learn from
real-time sensor data, audio and video and use the acquired knowledge to
make standalone assessments, predictions, and decisions locally rather than in
the cloud. Even more potential lies in combining real-time data from multiple
sensors and thus deriving new types of information, leading to a continuous
refinement and improvement of the ML/DL techniques. These techniques are
applied on low power devices at the edge, hence the terms “edge ML and DL”
are used interchangeably with “embedded ML and DL”.

Edge AI refers to processing the data at the edge using AI methods and
techniques, includingML and DL; however, edge AI has much more potential
to accomplish edge intelligence than ML and DL alone. Edge AI equips sen-
sor data with “the what” and “the how” to drive problem-solving processes,
design, and development; hence, edge AI can be seen as the edge ML/DL
of the future, encompassing architectures, frameworks, applications and edge
intelligence and concepts, such as meta-learning and meta-intelligence.

The applications of embeddedML span many market segments and appli-
cations, for some of which the best pathways to development and deployment,
such as time- and safety-critical applications, have yet to be found. The chap-
ter seeks to cover a wide range of terms and concepts, not only with the aim of
achieving a broader understanding of ML/DL applications but also to provide
a valuable vantage point of where ML/DL are heading in the near future.

Many industrial applications target embedded ML and DL into edge
devices, addressing the challenges and solving the problems posed by the
gap between the advanced state-of-the-art models developed in and for the
cloud and the limited capabilities of edge devices. The memory, processing,
transmission and power consumption capabilities and limitations always
depend on whether the device is micro-, deep-, or meta-edge device, but the
challenges are the same. The AI/ML model needs to be converted into an
efficient format, before compiling and flashing it into the device.
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Benchmarking experiments are needed to demonstrate that state-of-the-
art models with the right design and optimisation are compatible with the
stringent resource requirements of edge devices and to suggest areas of
improvement for the AI models.

Edge devices are typically single- and multi-core microcontrollers, with
varying capabilities and limitations and unique identities. The edge can
scale from a few devices to tens of thousands of devices distributed in
different locations, so the devices are able to operate independently, with
an unexplored evolution to training and inference actions. Although phys-
ically separated, the edge devices can be connected using wireless/wired
connections in topologies such as mesh, with an unexplored potential for
communication and distributed learning across devices inspired by recent
advances in emergent intelligence.

ML model architectures can allow for highly interactive flows, starting
with capturing the data straight from the embedded device all the way to
production and deployment. This entails gathering sensor data directly from
the products and environments and turning that data into useful data sets
to be applied to ML algorithms and signal processing, instead of relying
on predefined data sets. Furthermore, interactivity involves the verification,
validation, and testing (VV&T) of algorithms, so that the most optimal
solution given the device’s capabilities and limitations is finally deployed.

The data, hardware/software platforms and more are the ingredients to
design vertically integrated AI stacks, ensuring that edge AI is optimised
for its hardware and its target application with optimised performance and
efficiency.

The inference is performed on static models implemented on edge devices
or other types of devices depending on the application. The inference requires
many mathematical operations such as matrix multiplications and dot product
operations and the processing run on a CPUs, GPUs, FPGAs, DSPs, ASICs
depending on the processing power, energy efficiency, speed, and memory
requirements.

Edge inference requires optimised hardware acceleration and when the
process is connected to other performance-critical functions there is a need to
provide interfaces by tightly coupling other accelerators or processing units
into a common dynamic architecture.

1.8.4 On-device ML Applications Enabling True Edge Computing

The typical ML workflow takes advantage of several tools and frameworks,
such as TensorFlow, TensorFlow Lite, and PyTorch, as shown in Figure 1.29.
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Figure 1.29 Embedded ML design and development ecosystem view. Adapted from [40].

Some of them are optimised to run in very small footprints of memory and
processing cycles, and thus can be employed in industrial embedded systems
at the edge.

Most industrial embedded systems can be loosely classified into three
main categories:

• Vibration and motion include industrial systems with sensors that
allow not only for the control of the device but also for its predictive
maintenance.

• Voice and sound include industrial systems with microphones for voice
keyword detection and speech recognition.
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• Vision includes industrial systems recognizing objects to sort them
or spot defects, or systems identifying, for example, faces to unlock
devices.

The problems that may arise in industrial embedded systems worth investi-
gating to solve with the help of ML are many and multi-folded, but three
general main categories can be identified:

• Detecting anomalies in the operation of edge devices before something
breaks because industrial equipment can be expensive to produce and
even costlier to repair or replace.

• Classifying things, behaviour, or objects from any variety and combina-
tion of sensors, either internal or external to the edge device.

• Forecasting, such as what the signal will look like in the near or far
future, based on historical data.

All the potential use cases will have different workload performance and
scalability requirements, depending on the application:

• For the prediction and maintenance of machines, it is essential to predict
and give feedback on their health status as early as possible to avoid
instant shutdown.

• For security systems, it is essential to implement features such as facial
and voice recognition on edge devices to ensure they effectively con-
tribute to providing security, through their use with security locks for
home, offices, vehicles, and so forth.

• For autonomous vehicles, it is important that the devices installed on
the car analyse local surroundings to recognize traffic lights, pedestrian
roads, and people to make smart decisions.

• For surveillance and monitoring, it is crucial that any suspicious activ-
ities are monitored on edge devices and in real time by, for instance,
recognizing human movements.

• For robots and robotic things, it is essential to make decisions indepen-
dently without the need to connect to the internet.

While ML can be used to arrive at innovative solutions, it is important to
note that embedding AI on the edge has limitations and that ML alone cannot
always solve complex problems. Many industrial applications require other
technologies to work in tandem with ML to achieve effective, low-power
solutions to be deployed close to the sensor, thus enabling true edge
computing.

More in-depth insights into use cases implementing industrial AI appli-
cations at the edge and the transition to Industry 5.0 can be found in [36].
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1.8.5 Machine Learning on Embedded Devices

Most AI frameworks have been developed for desktops, servers, and laptops
with large resources. By contrast, embedded edge AI frameworks run on
smaller but efficient devices, such as single-board computers and microcon-
trollers. Single-board computers usually have a powerful microprocessor with
a separate memory, can run a full operating system, and can provide a full-
user interface; hence, they can adapt ML algorithms (such as Scikit-learn,
TensorFlow, PyTorch, Keras, and Caffe) that use high-level programming
languages such as Python, provided that they have enough power to fulfil
the task effectively and efficiently.

The situation is rather different for microcontrollers, which are usually
less expensive and require much less power, with only a few buttons or a
simple LCD screen of the user interface. Hence, the adaption of the existing
AI frameworks to run on microcontrollers has started to show results only
recently.

Software Platforms

TensorFlow Lite was the first AI software framework specifically designed
for micro controllers that allows running simple NNs without manually
programming the matrix operations and with only a few kilobytes of memory.
Since it was introduced, many AI software tools have been developed to
address the different requirements for designing and implementing ML on
edge devices. However, it was the optimisation of both hardware and soft-
ware in tandem that allowed for the use of more complex ML algorithms
in microcontrollers, which led to industries embracing the application of
embedded ML.

Optimisation can be multi fold: enable more complex models to be
deployed, meet real time latency constraints, extend the battery life of edge
devices. The important point is that even the smallest optimisation anywhere
in the system can make a difference, be it in hardware, software algorithms,
framework, libraries, as shown in Figure 1.30.

Hardware Platforms and Hardware-software Co-design
for ML

Embedded edge AI can be defined from the perspective of both hardware
and software, depending on whose capabilities are focused on. From the
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Figure 1.30 Embedded ML optimisation.

hardware perspective, embedded edge AI is defined as the capability of low-
power, resource-constrained devices such as sensors and actuators to execute
AI algorithms. From the software perspective, embedded edge AI is defined
as the capability of AI algorithms to adapt and run effectively and efficiently
on devices with limited resources.

The ability to embed AI in low-end devices is highly dependent on the
availability of automated frameworks with easy-to-use design flows that can
generate optimised AI models for the hardware targets. Thus, all hardware
components (microcontroller, communication- modules, sensors, actuators,
etc.) are part of the design flow. Hence, regardless of whether embedded edge
AI is defined from the hardware or software perspective, a hardware-software
co-design is key to embedding AI in edge devices.

Embedded edge ML has changed the way microprocessors and microcon-
trollers are used. AI can be embedded by augmenting development boards
with components such as sensors and additional chips, all geared towards
executing AI programs spanning from simple ML algorithms to resource
intensive DNNs.

Until recently, most of the chips developed only supported a subset of
functions used in modern DNNs, imposed by the memory restrictions and
computing capabilities of the hardware; not even specialised hardware could
execute DNNs.



1.8 Hardware/Software Technology Stack 59

Figure 1.31 ML hardware options for various AI tasks. Adapted from [39].

With the recent advances in hardware, developments have been directed
towards integrating AI and DNNs directly into sensor hardware. NNs target-
ing constrained devices are more efficient in terms of memory footprint and
inference time. Techniques such as quantisation are used to reduce computing
precision with no significant decrease in algorithm accuracy.

When designing hardware, special attention must be paid to the three
main classes of AI-related building blocks, namely memory, storage, and
logic. Memory is used for short-term storage during processing and consists
of dynamic random-access memory (DRAM). Storage represents the long-
term repository of large electronic data sets and consists of NAND flash
memory. Logic is used for processing, computing, and optimising the cal-
culation of NN operations or other specific AI functions and consisting of
CPUs, GPUs, FPGAs, different custom ASICs, etc.

The edge processing units under development must have several charac-
teristics such as a heterogeneous computing architecture (e.g., CPU, GPU,
ASIC, FPGA, neuromorphic, etc.), support for the main AI edge frameworks
(e.g., TensorFlow, Caffe, Keras, etc.), multi-modality, end-to-end embedded
security, and high energy efficiency.

Accelerators and Neuromorphic Hardware

Accelerators and neuromorphic hardware are both represented as sub layers
of the hardware layer, which is at the foundation of the technology stack.
Employing both generic and hardware-specific optimisations can lead to a
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significant decrease in the memory footprint of NNs and accelerate inference
latency.

Hardware accelerators are specialised hardware components within the
system that enable greater efficiency when running certain computing tasks
than is possible with software running on a general-purpose CPU alone. A
wide variety of dedicated hardware acceleration systems exist, and the most
common hardware used for acceleration include GPU, ASIC, FPGA.

Neuromorphic computing is a new computing technology that reproduces
human brain activity with models of selective spiking ensembles of neurons
in models that reproduce biological reactions.

Neuromorphic computers, as opposed to Von Neumann computers, which
are composed of separate CPUs and memory units, are inspired by the human
brain and are composed of neurons and synapses governing both processing
and memory. Programs in neuromorphic processing units are determined by
the structure of the neural network and its parameters instead of explicit
instructions, as in a von Neumann computer. Neuromorphic computers
receive spikes as input that can be used to encode numerical information
continuously, as opposed to Von Neumann computers that encode numerical
values represented by binary values [34]. This is intuitively illustrated in
Figure 1.32.

Consequently, neuromorphic computers present some essential opera-
tional differences: they are highly parallel, meaning that, in principle, all
neurons and synapses can operate simultaneously. Both neurons and synapses
perform processing and store values, resulting in no separation between
processing and memory. In addition, increasing the number of neurons and
synapses can be done easily; thus, neuromorphic computers are highly scal-
able. Neurons and synapses ‘spike’ only when there are spikes to process,
making them “event-driven”.

Figure 1.32 Comparison of the von Neumann architecture with the neuromorphic
architecture.
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Most of the work in neuromorphic computing has focused on hardware
development. A neuromorphic chip can contain thousands of neurons, with
their synapses, dendrites and axons reproducing human brain activity. How-
ever, neuromorphic computing requires both hardware and software, and to
be widely adopted by industry in the future, neuromorphic algorithms and
applications must catch up with technological advances in hardware. Spiking
Neural Networks (SNN), which mimics the energy-efficient signal system
in the brain, has drawn much recent attention. The main difference between
SNNs and traditional networks is that neurons in SNNs accumulate charge
from the environment or from other neurons over time; thus, time is a new
element in their operation. Algorithms that have been successful for DL
applications will need to be adapted to work on SNNs [34].

1.8.6 Embedded ML Development Flow in Industrial Setting

It is important to emphasise that the embedded edge ML flow and its associ-
ated processes are different from most typical ML flows. Many applications
deal with static ML flows. A ML flow is static when there are no time
variables in the equation. Hence, the static model is trained offline exactly
once, and then the trained model is used for inference for some time, at least
until an update is required. Moreover, many pre-built data sets are available
for various domains and applications that ML practitioners can use as a start.

By contrast, most industrial applications must cope with time series
problems and thus deal with data continuously entering the system over time.
Pre-built data sets are not configured for use with smaller ML applications
such as those intended for microcontrollers. In edge embedded systems,
data are not extracted from data stores such as files or databases but rather
are acquired directly from sensors. Thus, inference occurs in real time, and
in many cases, so does training. The timeline can be short (seconds or
minutes) or long (days or months). Owing to the dynamic aspect, re-training
is necessary.

Figure 1.33 illustrates a typical embeddedML development flow. In short,
the flow starts with the collection of signals. Continuous raw data are sliced
into smaller windows and processed into extract features. The trained model
is then deployed on the IIoT device and used to run inferences, whose result,
depending on the application, can be a prediction, a class detected, or an
anomaly detected. Pre-processing steps such as cleaning or filtering data may
be necessary to obtain a representative data set for the application and make
it easier to process.



62 Industrial AI Technologies for Next-Generation Autonomous Operations

Figure 1.33 The high-level embedded ML development flow.

In the following paragraphs the basic steps of the embedded ML design
flow are described, with examples from a generic use case, i.e., classifica-
tion of the state of a motor based on the vibration measurements using an
accelerometer sensor from an IIoT device. The motor is operating at fixed
speeds, which are divided into several classes based on various percentages
of the maximum speed.

The data collection process is essential, as good results are dependent
of qualified data for the training and can require considerable effort and
expertise to design the correct signal acquisition and sampling methodology
suitable for a particular application.

The signals for each of the classes can be acquired straight from the
device. The continuous raw data are usually sliced into smaller windows
whose size can be configured with parameters. From a three-axis accelerom-
eter sensor and with a buffer size of 256 samples on each axis, a total of
1536 values are produced per signal. With a sampling frequency of 1667 Hz,
each buffer represents a snapshot of approximately 300 milliseconds of the
accelerometer temporal vibration data. The number of signals and the split
between training and validation data can also be configured (usually 80%
training, 20%).

The vibration signals collected can be visualised as shown in Figure 1.34,
in both temporal and frequency plots for each of the classes.

One common pre-processing technique when examining vibration or
motion data to identify features is to take the Fourier transform of the data
to obtain information about them in the frequency domain and break the
signal into its various frequency components. By providing filtering, only the
frequencies that represent the characteristics of the motor vibration are kept,
and the rest are attenuated.
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Figure 1.34 Temporal and frequency plots as input to motor classification.

A feature is an individual measurable property or characteristic of a phe-
nomenon being observed and deciding what features to select is an important
task. Poor features will have negative impacts. For example, if the feature
only takes one snapshot in time, it is a poor feature because it provides no
information about how the signal changes in time.

Extracting the features to be fed into the AI model for training and,
ultimately, inference from large inputs can be performed automatically by
many AI frameworks. In a matter of seconds or minutes, all raw samples are
converted into sets of features.

A useful aspect of this automation is the possibility to visualise and
explore the features. In the case of a classifier, features that are visually
clustered are a good sign that the model can be trained to do the same. On
the contrary, if features overlap in various degrees and are intertwined, it is
very likely the trained model will have difficulties in differentiating between
classes. This problem can be solved in various ways such as increasing the
buffer size, that is, prolonging the sampling signal, to better capture signal
patterns or even changing some of the features.

The training process employs back-propagation algorithms to configure
and update the parameters inside the model that can improve the chances of
predicting each feature set. Parameters are usually configured automatically.

In contrast to the model parameters, hyper-parameters cannot be tuned by
the data and lie outside the model (Figure 1.35). These are values that must
be set manually, such as the size and shape of the model, the learning rate,
and the number of training steps to take, the features to use, and the methods
and calculations to pre-process the data.

The model validation data sets and test data sets are not part of the
training data sets. The validation data set can be used to analyse how well the
model performs against unseen data and to adjust identified problems prior to
using the test set (Figure 1.36).

Two common issues in ML are when the model underfits or overfits the
input data. The former is when the model performs poorly on training and
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Figure 1.35 Hyperparameters (outside the model) vs parameters (inside the model).

Figure 1.36 Categories of data sets and where they are used.

validation data, whereas the latter is when the model performs better on the
training data than it does with the validation or test data.

The solutions to these issues present particularities in the case of embed-
ded edge ML, but, in short, collecting more signals, selecting different
features, extending the training time and increasing model complexity will
usually work for underfitting, while gathering more data, training for a shorter
length of time and reducing model complexity and adding dropout layers will
work for overfitting.

Understanding NN architecture is essential to explore how increasing
or reducing model complexity affects model accuracy. A neural network
architecture can be optimised by several means (adding more layers to
deeper the model or increasing the number of hidden units to wider the
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model, changing the activation, and optimization functions, learning rate,
fitting more data, and more), and knowing what and how to optimise it is
a matter of experimentation. Fortunately, most platforms can automatically
tune hyperparameters.

Much of creating a better model is trial and error: gathering more data or
adjusting the hyperparameters and re-training your model to see if it improves
the per-class accuracy. Or sometimes, there may not be enough or the right
kind of data to train a good model.

One of the most useful evaluation tools is the confusion matrix of the
validation data (Figure 1.37). The predicted labels are on the x-axis and the
true labels on the y-axis. The diagonal elements are the number of points
for which the predicted label is equal to the true label, while off-diagonal
elements are those that are mislabelled. The higher the diagonal values of the
confusion matrix the better. The matrix is a good way to visually interpret

Figure 1.37 Confusion matrix.
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how well the model is doing at its predictions and understand where it may
need improvement.

In the context of micro-edge embedded systems, the deployment is
dependent on the hardware/software platform and is more or less automated,
and in essence comprises of three steps: the first is a format conversion
of the fully trained model, then a weight/model compression to reduce the
amount of memory to store the weights in the target hardware platform and
to simplify the computation so it can run efficiently on target processors. This
step is usually to quantize, i.e., converts all parameters from floating point
values to integers. Finally, the last step is compiling the model and generating
the code to be integrated with the MCUs firmware. The implementation
of these steps must follow the back-end flow specific to the target. The
optimisation challenge is to save as much memory as possible in the processor
or microcontroller, with as little reduction in the accuracy of the model as
possible.

Inference is the process of using live unseen data with a fully trained model to
make predictions. The inference and the output will look different depending
on the actual target device and production environment, but in essence, it
happens in three steps.

First, the input signal is sampled for a period of time sufficient to capture
the essence of the signal patterns before sending the raw accelerometer data
to the library for inference. With 1667 Hz sampling rate and 300 milliseconds
time length, the buffer size will be 256 samples producing in total 1536
values. The library expects these values to be stored in an array containing
raw sensor values. Next, features are extracted, and finally, inference is
performed, with the inference function returning the predicted probabilities,
each corresponding to one of the classes. The highest probability will indicate
the correct class, but threshold comparison and other algorithms can be used.
A minimum threshold can also be considered. This process loops indefinitely.
The state machine usually consists of two states with two functions “init”
and “inferencing”, respectively, with the former initializing the NN model
and the latter being a continuously running function for collecting raw data
from the sensors on board and making predictions in real-time. While feature
extraction and inference are performed, the buffer fills up with raw sensor
data in the background. More about applications that benefit from inference
at the edge can be found in [10].

To conclude the discussion on the Hardware/Software technology stack,
machine learning and neural networks can now be efficiently deployed
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on resource-constrained devices, which allow for cost-efficient deployment,
widespread availability, and the preservation of sensitive data. However, the
trade-offs that optimisation methods, software frameworks and hardware
architecture have on key performance metrics, such as inference latency and
energy consumption, have yet to be studied in depth.

1.9 Summary

Industrial AI and IoT/IIoT are enablers for building the foundations for digital
transformation and business innovation. Full-scale and full-stack industrial
AI technology accelerates digital innovation across industries and therefore
boosts productivity. The adoption of AI helps industries climb the value chain
and drive innovation, thus providing new paths to growth for manufacturing,
service, and other industries.

In this context, managing the end-to-end (E2E) AI technologies con-
nected with the IoT/IIoT, SCADA, and edge computing, is crucial for various
industrial sectors. Addressing the developments in silicon-born AI that enable
and generate AI-born embedded and industrial systems accelerates harness-
ing the silicon and embedded systems designed specifically for AI, thus
supporting E2E solutions and advancing the adoption of AI technologies
across industrial sectors.

Contributions to this chapter come from a diverse number of disciplines
and communities and cover related technologies across different layers in the
AI technology stack.

As result, the chapter provides an overview of the main concepts and
terminology related to industrial embedded edge AI technologies.

The shifting of AI methodologies from operating in the cloud to operating
at the edge as a fundamental approach for future developments on digitising
industries marks the beginning of a widespread transition in the control
of industrial processes and the functionality of devices. AI methodologies
operating on the edge must drive the major milestones of this transition on
any roadmap.

Embedded edge AI platforms, training and learning, and applications
form the foundation that supports the development of edge AI applications.

AI-optimised hardware provides the core infrastructure for embedded
edge AI applications. It includes AI chips (neuromorphic, CPUs, GPUs,
FPGAs, ASICs), large-capacity, low-latency, and all-flash arrays, and solid-
state storage devices; high-performance, high-throughput, and highly scal-
able edge servers and network equipment. Turning data into descriptive,
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diagnostic, and predictive analytic insights requires visualised modelling and
code testing environments, as well as ML and DL edge platforms configured
for general AI applications or real-time embedded environments.

Edge AI technologies and applications require advanced industrial enter-
prise high-level architecture as a reference for implementing embedded
edge AI technologies in an environment that can manage the large-scale
deployment of AI applications.

The infrastructure layer requires edge computing and modular processing
units integrated with on-premises platforms. In the industrial platforms and
application layers, the analytics and flexible service capabilities of edge
must support the integration of industrial enterprise applications with various
industrial AI applications.

As AI matures, AI technological development often intersects other
technological areas.

The chapter introduced an overview of AI concepts, including definitions
to establish a common vocabulary for the stakeholders involved and for the
presentation of E2E industrial embedded edge AI technologies across the
technology stack, application, and industrial sectors. The chapter can thus
serve as a reference for various partners and stakeholders to help reach the
full potential of edge AI for digitising industry by introducing developments
in silicon-born AI to enable and generate AI-born embedded and industrial
systems and accelerate the adoption of edge AI technologies across various
industrial sectors.

Industrial edge AI technologies differ from consumer AI technologies that
provide citizens with direct technology exposure, so industrial AI solutions
may lack direct consumer scrutiny. Nevertheless, societal perception has an
impact on how unions perceive the introduction of edge AI technologies, how
management decisions on investment are made and how policymakers decide
upon regulations.
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Abstract

Edge artificial intelligence and machine-learning algorithms increasingly
enter our day-to-day products and applications. This massive adoption of
data in all aspects of human activity will lead to unprecedented growth in
computational needs to process this data into useful information and actions.
The current approach to process this data in high-end cloud server parks is no
longer sustainable as it costs energy, latency, and poses privacy threats. Real-
izing intelligent energy-efficient local processing is however extremely chal-
lenging. Neuromorphic computing, modelled according to the human’s brain
nerve network, is often suggested to realize such processing. Building such
neuromorphic processing hardware however requires major advancements
at different levels. New technology platforms for emerging semiconductor
devices must be developed, levering emerging memory technologies which
show characteristics related to neuromorphic computation. Magnetoresistive
Random Access Memory (MRAM) could mimic the stochastic behavior of
synapses, Ferroelectric Random Access Memory (FeRAM) could be tuned
to emulate synaptic weight, and the temporal and analog qualities of bio-
logical neurons and synapses could be mimicked Resistive Random Access
Memory’s (RRAM’s) memristors. We also present a 3D interconnection
roadmap suitable to integrate neural accelerators. Related to neuromorphic
hardware design and architectures, we optimize conventional neural network
algorithms like Deep Learning (DL) and Spiking Neural Networks (SNNs)
by focussing on their most critical parts in terms of power, performance,
and area. All this will be leveraged in use case demonstrators for different
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applications that need complex machine-learning algorithms in their mobile
devices. All these activities are executed in the TEMPO project aiming to
broaden the applicability of integrated neuromorphic hardware by means of
technological innovation.

Keywords: Neuromorphic computing, edge processing, spiking neural net-
works, deep learning, hardware, silicon technologies

2.1 Mobile Devices Call for Efficient Neuromorphic
Computing

Increasingly, edge artificial intelligence and machine-learning algorithms
enter our day-to-day products and applications such as smart home assistants
with natural-language processing, face-recognition-based security systems or
autonomous vehicles. In the coming years, the demand for these increasingly
complex computational algorithms will only grow further. At this moment,
high-end server parks process the data in the cloud.

However, sending data to the cloud costs energy, latency, and is often not
preferred for privacy reasons. As such, the ultimate edge artificial intelligence
applications require intelligent energy-efficient local processing.

Realizing such intelligent energy-efficient local processing is however
extremely challenging. Neuromorphic computing which is modelled accord-
ing to the sophisticated nerve network of our human brain is often suggested
as key technology to realize such processing. The project ECSEL JU TEMPO
(Technology and hardware for neuromorphic computing) [1] aims to progress
towards such processing. TEMPO collaboratively develops technology and
hardware platforms leveraging emerging memory technologies for neuromor-
phic computing. The goal is to develop a new way to support a diversity
of applications in mobile devices that need complex machine- learning
algorithms.

2.2 Neuromorphic Hardware Enables Next Generation AI

Neuromorphic engineering is a ground-breaking approach to the design
of computing technology that draws inspiration from the powerful and
efficient biological neural processing systems. Neuromorphic devices can
carry out sensing, processing, and motor control strategies with ultra-low
power performance. Today’s neuromorphic community in Europe is leading
the State-of-the-Art in this domain. The community counts an increasing
number of labs that work on theory, modelling, and implementation of
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neuromorphic computing systems using both conventional very large-scale
integration (VLSI) technologies, emerging memristive devices, photonics,
spin-based, and other nano-technological solutions. To enable the uptake of
this technology and to match the needs of real-world applications in future
products that solve real-world tasks in industry, healthcare, assistive systems,
and consumer devices, extensive work is needed in terms of neuromor-
phic algorithms, emerging technologies, hardware design and neuromorphic
applications respectively.

In the TEMPO project, we consider “neuromorphic” as brain-inspired
algorithms, and we focus specifically on conventional DL and SNNs. That
way, it is ensured that both established paradigms are covered in the greater
domain of brain-inspired computation. Given the slowdown of silicon-only
scaling, it is important to extend the roadmap of neuromorphic implementa-
tions by leveraging fitting technology innovations. Along these lines, TEMPO
sweep technology options, covering emerging memories and 3D integration,
and attempt to pair them with contemporary DL and exploratory (SNN)
neuromorphic computing paradigms.

Terms like Artificial Intelligence (AI) and Machine Learning (ML) enjoy
a popularity trend that is fuelled by a wide variety of applications. They
come in a wide variety of underlying algorithms. Regardless of the algorithm,
the goal of TEMPO is to implement accurate classifiers and/or predictors
of raw data that is either available in a pre-stored location or entering as a
stream (images, audio, video, etc). The local deployment of these algorithms,
exactly near the generation of raw data, is identified as one of the main
progress directions of the overall AI/ML trend [2], which assists the already
growing ecosystem that develops and applies neuromorphic algorithms on an
increasing number of end-user applications [3]. This observation is echoed
additionally by the increasing percentage of custom chips that are designed,
which follow the growing AI/ML trend and execute a wide variety of
neuromorphic algorithms [4].

To address this, TEMPO aims to broaden the applicability of integrated
neuromorphic hardware by improving energy efficiency with emerging
memory technologies in novel neuromorphic hardware implementations, and
to develop technology platforms for emerging semiconductor devices and
demonstrate them for the energy efficient hardware implementation of
neuromorphic workloads. To achieve this, TEMPO spreads over three
action areas as illustrated in Figure 2.1. These action areas cover (1) the
definition and the enablement to develop the emerging technologies, (2)
the architectural definition and the related neuromorphic hardware design,
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Figure 2.1 TEMPO spreads over three action areas.

and (3) the neuromorphic algorithm design and leverage the neuromorphic
technologies for future applications in mobile devices that need complex
machine-learning algorithms.

2.3 Building Neuromorphic Hardware

Neuromorphic hardware is the key to sustain the ability of mobile devices to
deal with complex machine-learning algorithms. Building such neuromorphic
solutions, however, comes with many diverse challenges. These challenges
can only be tackled through synergetic collaborations across the entire neu-
romorphic technology value chain covering major foundries, chip design,
system houses, application companies and research partners. TEMPO acts
as the umbrella to enable such synergetic activities to address the following
objectives:

• Enable the joint development of participating European Research and
Technology Organisations (RTOs), foundries and leading (application)
companies towards the identification of emerging semiconductor tech-
nologies that fit best to neuromorphic hardware and address relevant
applications indicated by participating end-user partner companies.

• Evaluate current concepts for the implementation of neuromorphic
hardware according to Key Performance Indicators (KPIs) at the device,
architecture and application level, like power consumption, silicon
area/cost, latency, throughput, energy for a given application task,
memory bottlenecks, manufacturing challenges, operating frameworks.

• Extend the technology roadmap that is driven by Integrated Circuits
(ICs) designed specifically for AI and ML applications by evaluating
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and demonstrating the applicability of emerging technologies that can
provide scalable power, performance, and area benefits.

• Broaden the applicability of neuromorphic hardware, by designing
energy efficient integrated neuromorphic implementations, by fabricat-
ing them in collaboration with European foundries and in European
cleanrooms, and by benchmarking them in terms of power, performance,
and area in the context of pervasive applications that are provided by the
end-user partners of the TEMPO project.

• Exchange wafers (where applicable) between foundries and the par-
ticipating RTOs to facilitate the demonstration of functional neuromor-
phic chips, combining concepts from different RTOs and technologies
from industrial companies. This will enable the use of the extensive
know-how of European RTOs for future products while maintaining
contamination free high-volume manufacturing.

• Quantify the capability of the most prevalent neuromorphic hard-
ware implementations by targeting a broad algorithmic spectrum and
isolating the critical sections of each algorithm. This includes DL
inference such as Convolutional Neural Network (CNNs) and SNNs.
This wide coverage will result into a CNN - technology-, design-, and
system-aware scorecard containing the most sought-after neuromorphic
implementations and their coupling with emerging technologies and
applications.

• Complement existing research and provide guidance for future direc-
tions in the domain of neuromorphic algorithms, design, and systems
by assessing the suitability of emerging technologies. The comparative
evaluation between implementations of different neuromorphic algo-
rithms can provide guidance to European neuro- morphic research,
placing each approach in the context of emerging technologies and
relevant applications.

• Enable the European industry to remain at the leading edge of
neuromorphic chip development.

More detailed approaches ang the three action areas defined in TEMPO and
illustrated in Figure 1.3.1 are described in the next sections.

2.3.1 Approach to Realise the Emerging Technologies

The core technology component of the TEMPO project is the development
of emerging technologies that can provide measurable efficiency benefits
to neuromorphic hardware implementations. The objectives with respect to
technology are to:
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• Align the process practices of involved partners, so that base wafers
can be optimally exchanged for the development of novel neuromorphic
hardware. This includes both the transfer of wafers from the foundries
to the involved RTOs and, where/when applicable, the transfer of wafers
between the cleanrooms of the RTOs.

• Match emerging memory technologies with the proper neuromorphic
algorithms, so that hardware integration of the former brings about
power, performance, area, and cost benefits.

• Adjust process practices so that the integrated emerging memory
modules are compatible with traditional semiconductor manufacturing
practices.

2.3.2 Approach to Derive the Hardware Architectures and
Designs

The core hardware component of the TEMPO project is the development of
processing hardware technologies which are efficient to support future AI-
intensive mobile applications. The objectives with respect to neuromorphic
hardware are to:

• Develop novel architectures and sub-system designs that help to reduce
the memory bottleneck and power consumption, allow for a minimiza-
tion of required memory space, and minimize the occupied silicon
area (i.e., chip cost) while maintaining target accuracy, latency, and
throughput.

• Extend basic architectures of CNN or SNN arrays with a scalable global
communication network to enable high throughput and high complexity
applications.

• Design modules that use emerging memory technologies to implement
the core workloads of the major neuromorphic algorithms.

• Ensure component- and system-level compatibility with traditional
electronic design flows.

• Estimate the power, performance, area, and cost of emerging memory
integration for neuromorphic algorithms at the system-on-chip level and
compare against contemporary implementations.

2.3.3 Approach Related to Neuromorphic Algorithms and
Applications

To put the TEMPO project into the general perspective of accelerated ML,
it is fundamental to identify the exact workloads that will be targeted for
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efficient and low power hardware integration with advanced technologies.
This is a major precondition, as it is of vital importance to optimally concen-
trate the effort of the project to the fundamental computational bottlenecks
identified in the target neuromorphic algorithms. The algorithmic objectives
of the TEMPO project are as follows:

• Profile target neuromorphic algorithms for computational/memory bot-
tlenecks

• Identify the algorithm regions that warrant hardware support
• Specify the complexity of the integrated neuromorphic implementations

TEMPO aims to allow applications to make easy use of the new neuromor-
phic technologies. The objectives to enable this are:

• Extend the range of applications to domains requiring (ultra-)high
throughput and high complexity such as high throughput imaging,
autonomous vehicles, vision enabled robots.

• Create a demonstration design flow and a tool flow that connects the
target neuromorphic algorithms with the target applications.

• Prototype the design and tool flows to illustrate real time charac-
teristics of the target neuromorphic applications, before the emerging
technology samples become available.

• Demonstrate the feasibility and efficacy of integrated neuromorphic
kernels on state-of-the-art benchmarks with functional demonstrators
that use or emulate the proposed neuromorphic building blocks.

2.4 Positioning Within the Neuromorphic Computing
Landscape

Neuromorphic computing comes in many flavours and forms of maturity.
Figure 2.2 gives a simplified but illustrative view of the greater landscape
of neuromorphic computing. In terms of implementation, neuromorphic
computing can rely in analog, digital or hybrid hardware technologies. In
terms of algorithms, the spectrum can range between the compute-intensive
deep learning algorithms towards event-based processing like spiking neural
network algorithms. The production level maturity is indicatively illustrated
in Figure 2.2. Digital processing units like CPU’s and GPU’s and readily
available on the market and are used for compute-intensive tasks in server
racks and in the cloud. Commercial solutions are, however, scarcer when
considering more analog implementations and/or more transient-based pro-
cessing. TEMPO covers the complete brain-inspired computation domain,
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Figure 2.2 TEMPO positioned in the greater landscape of neuromorphic computing.

algorithmically ranging from DL inference engines to exploratory SNNs, and
implementation-wise from standard digital to mixed-signal or analog imple-
mentations. The quadrant uncovered by TEMPO aims at massively parallel
computer architectures. These architectures aim to mimic the implementa-
tion of human brains, which are composed of billions of simple computing
elements, communicating using unreliable spikes.

The TEMPO project will existing evaluate memory technologies at
device, architecture, and application level, and build and expand the tech-
nology roadmap for European AI hardware platforms. The project will
leverage MRAM, FeRAM and RRAM memory to implement both SNN and
Deep Neural Network (DNN) accelerators for 8 different use cases, rang-
ing from consumer electronics to automotive, digital industry and medical
applications.

MRAM is a type of memory that stores data magnetically but uses electrons
to read and write it. The magnetic character provides non-volatility, which
the electronics provides speed. A storage element is comprised of two ferro-
magnetic layers, consisting of a free layer and a pinned layer, sandwiching a
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non-magnetic oxide layer. It works by overcoming the resistance required to
switch the magnetization from one direction to the other. Multiple resistance
states can be achieved by incorporating domain walls in the free layer. The
stochastic nature of switching states in these devices can be employed to
mimic the stochastic behavior of synapses.

FeRAM memory uses ferroelectric materials that can switch rapidly between
two polarized states. This type of memory offers high performance at low
power, along with the added advantage of non- volatility. Ferroelectric
Field-Effect Transistor (FeFET) can be tuned to emulate synaptic weight,
an important element of neuromorphic computation. One big advantage of
FeFET is that some ferroelectric compounds are also Complementary Metal-
Oxide Semiconductor (CMOS)-compatible, making it easier to integrate into
standard computing platforms. The downside is that the technology also suf-
fers some of the limitations as Dynamic Random-Access Memory (DRAM),
including scaling, leakage, and reliability.

RRAM is a form of nonvolatile storage that operates by changing the
resistance of a specially formulated solid dielectric material. An RRAM
device contains a whose resistance varies when different voltages are imposed
across it. RRAM acts as an electronic switch that exhibits non- volatility,
i.e., will retain its resistance state even after the voltage is turned off. The
main advantages of this memory type are its scalability, CMOS compatibility,
low power consumption, and analog conductance modulation. Its suitability
for neuromorphic computing is related to the memristor’s ability to change
its state based on the history of voltages applied to it. As a result of this
behaviour, it has the temporal and analog qualities of biological neurons
and synapses. However, making these memristors more uniform so they will
operate reliably is challenging.

2.5 Targeted Use Cases and Application Domains

The TEMPO project leverages its developed technologies over 8 different
use cases over 5 application domains (automotive, food, digital industry,
consumer electronics, and medical health). Table 2.1 gives an overview of the
different use cases and the related neural network approach and technological
choices. The different use cases are driven by the key industry partners within
the consortium.
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Table 2.1 Edge AI use cases addresses in TEMPO covers five application domains

The following sections elaborate some of the envisioned use cases.

2.5.1 Food – Food Classification

This use case focusses on building a network and data pipeline for the
classification of western food as illustrated in Figure 2.3. This activity builds
a state-of-the-art DNN classifier based on the publicly available dataset
Food-101 [5]. The classifier is embedded onto the Edge Tensor Processing
Unit (TPU) of Coral [6], which is a low-power DNN accelerator. This
will enable to benchmark the developed technology against commercially
available hardware solutions.

2.5.2 Automotive – Object Recognition and Sound Localization

This use case focusses on localization and recognition of objects/sound
generators. A sound event localization, detection, and tracking network has
been developed and could be intended to be on an Field-Programmable
Gate Array (FPGA) which emulates the analogue parts of the circuit. A
simar demonstrator based on the same principle might be developed by
replacing the sound measurements by object visualization through a video
camera. Additionally, radar-based object detection might be developed based
on hardware developed in the project. Radar has the advantage over video as
its network size is considerably smaller.

2.5.3 Digital Industry – Pattern Recognition (Keyword Spotting)

Speech processing enables natural communication with smart phones or
smart home assistants. However, continuously performing speech recognition
is not energy-efficient and would drain batteries of smart devices. Instead,
speech recognition systems passively listen for utterances of certain wake
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Figure 2.3 Possible inputs for the western food classification DNN [5].

words to trigger the continuous speech recognition system on demand [8].
In the project, “speech command datasets” have been analysed and features
were extracted, and processing pipelines were implemented. The pipelines
were used to explore different SNN algorithm approaches. Hybrid variants
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will be specified and simulated. After the hybrid variants are evaluated, the
algorithms will be integrated into full SNNs.

2.5.4 Consumer – Coaching Biomechanical Assistance
(Running)

This use case focusses on real-time running coaching. From an optimized
database infrastructure of runners’ user data and an improved classification
neural networks will be trained. New software that will facilitate broader data
and image assimilation from users and classification will be developed of
additional input parameters.

2.5.5 Medical Health – Medical Image Denoising

Efficient medical image denoising is essential on mobile X-ray systems. To
facilitate this, dataset specification and analysis of the noise characteristics
are being made. This shows to be essential and challenging as part of the noise
is signal-dependent. Metrics are being proposed to measure and quantify
image quality comparisons, and specifications are set for the test cases to
be performed on the SNN implementations.

2.6 Neuromorphic Hardware Technologies Being
Developed

The developments in TEMPO are still ongoing; it is planned leverage the
developed hardware and application results into the envisioned use case
applications and related demonstrators by the end of 2022.

The project started with the process technology pathfinding work to
enable neuromorphic and AI applications to leverage embedded non- volatile
memories (eNVMs). This pathfinding work included the design of process
technology test vehicles and process flows. At the same time, core build-
ing blocks and accelerator architectures have been designed to leverage
the memory technologies in the application demonstrators. Basic neuromor-
phic building blocks were investigated with a focus on the development of
neuromorphic–ready NVM blocks, the modelling and simulation of eNVM,
the quantification of the technology features and neuromorphic implemen-
tation of eNVM. 3D specifications suited for DNN accelerators have been
defined and a design flow to be able to quantify performance and energy
impact of 3D interconnect has been set-up. Design and architecture explo-
ration, specification, and design of critical building blocks to enable full
accelerator IP blocks has been done.
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Later in the project, the first hardware and algorithms were leveraged
towards the applications via the different use cases. In the domain of
emerging technologies, basic neuromorphic building blocks (MRAM, Oxide
Random Access Memory - OxRAM and FeFET) were investigated, with a
focus the development of neuromorphic–ready NVM blocks, modelling and
simulation of eNVM, and the quantification of the technology features and
neuromorphic implementation of eNVM. Also features of embedded memory
for Neuromorphic Accelerators have been investigated, such as multi-level
memory and the synapticity/plasticity of the memories. In the domain of
technology integration, compact models were created based on the data
from first OxRAM, Phase-Change Random Access Memory (PCRAM) and
FeFET implementations. Also, 3D specifications suited for DNN accelerators
have been defined and the 3D place and route (PnR) design flow has been
created to quantify performance and energy impact of the 3D interconnects.
An illustration of an envisioned 3D interconnect roadmap suitable for typical
neural accelerators is illustrated in Figure 2.4. In the domain of neuromor-
phic hardware design and architectures, potential design, and architectures
of the most critical neuromorphic DNN and SNN building blocks in terms
of power, performance and area have been explored. Finally, in the domain
of application specification and demonstration, the use cases and related
data sets have been defined and the reference platform has been chosen and
benchmarked. These uses cases have been elaborated in section 2.5. Theses
use cases are being implemented towards demonstration.

TEMPO will continue to combine both the developed hardware and
application results to enable demonstration of energy efficient accelerators
for the different use cases defined in the project.

Figure 2.4 3D landscape, ordering of 3D technologies according to the system-level wiring
hierarchy [11][12].
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2.7 Conclusion

In most application domains, the amount of data produced in sensors and
devices is exploding. Sending this data to the cloud costs energy, latency, and
is often not preferred for privacy reasons. Applications relying on artificial
intelligence in the edge require intelligent energy-efficient local processing.
The TEMPO project develops such energy efficiency neuromorphic hardware
with emerging memory technologies like MRAM, FeRAM and RRAM,
and develops technology platforms for emerging semiconductor devices. In
the domain of emerging technologies, the project investigated the different
memory types to confirm their suitability and limitations towards offering the
needed neuromorphic features and implementation. Compact models were
created based on the first memory implementations and a 3D interconnect
roadmap suitable for typical neural accelerators has been designed and pre-
sented. To enable neuromorphic hardware design, the architecture of the most
critical neuromorphic DNN and SNN building blocks have been explored in
terms of power, performance, and area. This paves the way to demonstrate
these technologies for the neuromorphic workloads required in the envisioned
use cases. These use cases and their dataset requirements have been specified
as discussed in this article. These use cases cover a broad range of application
fields within automotive, consumer electronics, digital industry, food, and
medical health. As such, the TEMPO project is successfully pursuing its goal
to broaden the applicability of integrated neuromorphic hardware.
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Abstract

The European project ANDANTE [1] aims at providing neuro-inspired
and/or energy-efficient hardware accelerators for running AI applications at
the edge. Given the wealth of applications targeted, with various processing
needs and sensors involved, several implementations are pursued in parallel:
(1) fully digital or analog-mixed signal; (2) with classical coding or spike
coding; (3) leveraging different embedded Non-Volatile Memory (NVM)
technologies. However, what do all have all in common? it’s the need for
adequate tools and methodologies for training and deploying neural network
models, considering hardware constraints. This Chapter provides details on
what has been developed and used in the frame of the ECSEL JU ANDANTE

89
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project. Firstly, a neural network must be learnt, considering limited hardware
resources, thus exploiting quantization and sparsity for instance. When deal-
ing with Spiking Neural Networks (SNNs), the training phase is even more
critical, depending on the neuron model and making use of various strategies
(direct training versus conversion). Then, the network must be mapped on the
target accelerator, be it a spatially folded or spatially expanded architecture.
In the latter case, graph transformation might be needed using a compiler.
Finally, Key Performance Indicators (KPIs) must be extracted, underlying
the need for a simulator/profiler.

Keywords: Machine learning, deep learning, artificial neural networks,
spiking neural networks, optimisation, quantization, pruning, distillation,
NN model transformation, sparsity, ANN-to-SNN conversion, accuracy, NN
compiler, mapping strategy, simulation, profiling

3.1 Introduction

3.1.1 Edge Computing Benefices and Challenges

Edge computing is creating new opportunities for Internet of Things (IoT)
applications. Through machine learning, objects become intelligent and can
process a large amount of information. However, most of this processing
today still takes place in the cloud, and it comes at several costs: infras-
tructure, reliability, security, speed, and energy. Firstly, the infrastructure to
process data from heterogeneous devices needs an extensive infrastructure
to gather, transform, and store the data and the devices themselves need
connectivity and the corresponding energy to send the data. Therefore, having
the data stored and analysed at the edge can reduce the infrastructural costs,
save energy, and increase globally data processing efficiency. Secondly, for
applications that are critical and need high availability (such as pipeline
monitoring), a reliable and secure connection is necessary.

Having devices that can decide at the edge can mitigate the risk associated
with the loss of connection and prevent data from being accessed by a
third party to ensure security and privacy. Moreover, intelligent edge devices
are also necessary for applications where decision speed (low latency) is
critical, such as autonomous driving, as having data transferred to the cloud
is inconceivable: the latency associated with the connection might result in
the life or death of people. Finally, the energy associated with the transfer
and data processing in the cloud is still enormous: 40% of the energy used
in mobile streaming comes from the mobile cellular network. Therefore, in
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the context of the climate crisis, edge machine learning can substantially
reduce the carbon footprint associated with data processing in the cloud.
The reduction of infrastructure costs, reduction of communication bandwidth,
improvement of security and privacy, and availability of services are by-
products of deploying efficient, intelligent, and cost-effective devices at the
edge.

With the wide acceptance of Deep Learning (DL) in the last decade, it
has become evident that classic deep learning cannot scale, as performant
networks use an enormous amount of energy and memory capacity, and the
models are becoming larger as their computational power needs increase.
Moreover, Moore’s law is ceasing to apply, and we need new computational
paradigms to increase computational performance with a reduced energy
budget. With the evolution of IoT devices, deep learning models are now
deployed at the edge, allowing local real-time decision-making, efficient pre-
processing, and privacy-preserving applications. Optimizations have been
developed in the past few years to allow the deployment of these networks
within restricted resource environments; quantization, pruning, distillation,
are some of them, which are either applied during training or post-training
of the neural network. While these techniques offer a partial solution for the
deployment on edge devices, a lot of engineering is still required to design
models that fit within the constraint of the hardware. An alternative emerging
machine learning technology to reduce energy relies on SNNs, which are
structures imitating the neurons in the brain. Their computational efficiency
is thought to be due to the coding style of the biological neurons, which
communicate using electrical discharges, called spikes, that travel from one
neuron to the other using synaptic connections.

While industry leaders Intel, ARM, Google, and NVIDIA are developing
systems targeting large-scale computation based on Graphics Processing
Units (GPUs) or specialised AI processors for generic AI applications in
the cloud, a parallel branch targets low-power applications at the edge, with
algorithmic solutions that will only be efficient if they can run on suitable
hardware solutions. Currently, much effort is put into developing low-power
accelerators for artificial neural networks, and to some extent, spiking neural
network. Academia is also putting effort into the development of technolo-
gies targeting edge processing: the recent development of memristors and
Ferroelectric Field-Effect Transistor (FeFET) technologies herald a new era
of ultra-low-power hardware to accelerate neural networks [21][22].

While most accelerators target generic applications, there are still many
limitations on the hardware that make them suboptimal for specific tasks:
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limitation in speed, memory size, supported operations (spiking or digital), or
energy consumption. This wide choice of embedded systems makes it chal-
lenging to identify the relevant hardware suitable for a particular application.
This major challenge restricts the adoption and dissemination of ultra-low-
power applications, as many efforts are put into studying and researching the
most suitable device.

3.1.2 Artificial Neural Networks (ANNs) and Spiking Neural
Networks (SNNs)

In biology, neurons communicate through current inputs called action poten-
tials, or spikes. When a neuron receives input stimuli (spikes) from other
neurons, they depolarize the neuron cell membrane by changing the concen-
tration of ions inside and outside of the cell membrane, creating a potential.
The strength of the depolarization depends on the strength of the synaptic
connection between the pre- and post-synaptic neurons. The succession of
depolarizations events leads to an increase of the membrane potential. If the
cell membrane potential increases to a precise threshold voltage, it triggers a
cascade effect leading to the emission of a spike.

In 1958, Frank Rosenblatt created the first model of a neuron generating
binary decisions, simulating the emission of a spike, or not. The perceptron
was a single neuron model performing computation using multiple weighted
input values, simulating the strength of the synaptic connections, using a
weight matrix. When the weighted sum of input reached a certain value,
the neuron output switched. Current deep learning relies on variants of this
algorithm, by creating stacked structures (layers) of neurons that combine
and transform the information in a non-linear manner, resulting in impressive
performance in a wide variety of tasks.

Deep learning algorithms can be accelerated on dedicated hardware to
provide low-power solutions for edge applications. ASICs for deep learning
inference accelerators offer better area and energy efficiency than GPUs,
FPGAs or CPUs but at the cost of less flexibility [1]. Since ANNs perform
multiply and accumulate (MAC) operations, the hardware pursues to acceler-
ation such operations by parallelizing them. To overcome the von Neumann
bottleneck, ASIC architectures based on analog in-memory computing with
crossbar arrays to perform the MAC operation are pointed out as a relevant
solution when it comes to low latency and high energy efficiency. Such
inference accelerators have on-chip memory buffers as well as processing
elements where the weights are stored individually to avoid data movement
during inference.
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Although inspired by the biological nervous systems, ANNs are yet
unable to capture the sophisticated neurocomputational features of biological
neurons. To bridge this gap, DL community has come up with a third genera-
tion of ANNs known as SNNs. SNNs are more closely mimicking biological
neural networks than artificial neural networks that are rate-based. This type
of neuron is represented by a membrane state and therefore incorporates the
concept of time. Spiking neural networks, in contrast to artificial ones, only
send “spikes” and not digital values. However, they can represent values using
spike trains, which rate can be as equivalent to values processed by artificial
deep neural networks.

Research on spiking neural networks is still on-going. The recent devel-
opment of neuromorphic hardware platforms has allowed simulation of
large-scale brain models. However, how to perform deep learning using these
types of neurons is still unclear. In particular, a lot of different types of spiking
neurons exist, and no standard has been agreed on yet. This wide variety of
neurons must also be considered by designers of neuromorphic hardware, so
that researchers can assess the suitability of models.

The neurons in SNN are described on different abstraction levels start-
ing from the most realistic and complex model, Hodgkin-Huxley (HH)
model, to the leaky integrate-and-fire (LIF) model which is the simplest and
most computationally efficient model bearing the neurocomputational prop-
erties [23]. LIF introduces a leaky term to the integrate-and-fire (IF) model
that causes neuron potential decay over time making it more biologically
plausible.

With the advancement of research on spiking neural networks, academia
and industry have developed accelerators and processors specialized in sup-
porting this type of algorithm. A few research institutes and companies
develop large-scale hardware solutions to simulate spiking neural networks,
like SpiNNaker, IBM TrueNorth, and Intel Loihi and Loihi 2. While rea-
sonably accurate at simulating large-scale brain dynamics, these processors
do not target ultra-low-power edge applications and still use a considerable
amount of energy. As their primary purpose was to simulate SNN, the pro-
cessing happening in these accelerators is unsuitable for common industrial
applications, as developed nowadays using deep learning. Research is still
actively investigating suitable event-based device for industrial applications,
and now we observe the emergence of new hardware accelerator relying
on binary events computed in a synchronous manner, meeting halfway
between the pure asynchronous SNNs and the synchronous processing
of ANNs.
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In the ANDANTE project, this type of efficient hardware neuromorphic
accelerators is being addressed based on new embedded memory tech-
nologies such as PCM, OxRAM, MRAM and FeFET, novel ANN/SNN
architectures combining analog digital mixed-signal designs, which call for
dedicated tools and methodologies.

The rest of this Chapter is organized as follows: Section 3.2 provides
the state-of-the-art in neural network training, exploiting quantization, spar-
sity and showing different strategies for training spiking neural networks.
Section 3.3 presents further refinements to sparsity, to exploit temporal spar-
sity (in addition to the weight and activation ones) by adding a new layer
called Temporal Delta Layer. Section 3.4 describes how to map a neural
network onto a spatially expanded, in memory computing-based architecture:
in such a case, the neural network weights must be adequately clustered
or duplicated on the various NVM arrays. Finally, Section 3.5 shows the
mapping of spiking neural networks on a hardware target implementing LIF
neurons with recurrent connections. Finally, Section 3.6 gives clues on why
it is important to profile a neural network topology.

3.2 State-of-the-art of key aspects of Neural Networks

3.2.1 ANN and SNN Hardware Aware Design

Hardware-aware design of artificial and spiking neural networks is still a
multistep process. Since no generic design and simulation tools are available
for custom neuromorphic hardware platforms, it is still required to deploy the
model on the physical devices to obtain the key performance indicators of
the application. As shown in Figure 3.1, the optimization of a neural network
for a specific edge device is an iterative process involving hardware/software
co-design. The first iterative cycle is the development of an accurate model
solving the task to which it is designed, and the second cycle consists in
the embedding and evaluation of the model. The model can then be further
optimized towards the optimization of edge KPIs, necessitating a new training
iteration phase followed by deployment. The process can be automatized
using automated search procedures like Network Architecture Search (NAS),
which have demonstrated to be suitable solutions for the design of a model
respecting the constraint of their end-deployment platform [77]. However,
this framework still contains major challenges. Indeed, the deployment on a
device is often complicated and requires a manual adaptation of the model to
allow the neural network to run on the device. Moreover, some platforms have
a specific instruction set or a variable data representation (float or integer),
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Figure 3.1 Networks to hardware workflow.

requiring a quantization step either during training (defined at the creation of
the model) or after training, usually impacting the overall performance of the
network. Finally, platforms are often behind the latest software developments
in the creation of layers in neural networks, which makes some architectures
impossible to deploy due to the existence of unsupported layers.

Regarding the automatic search of architectures for a certain platform,
the computational cost is still very intensive and usually must be replicated
for each new platform, despite recent improvements in this direction [69].
Therefore, flows and techniques have been developed to design efficient
neural networks for neuromorphic hardware platforms. Some of them are
described in the next paragraphs.

3.2.2 Sparsity

Reducing energy consumption is a critical point for neural network mod-
els running on edge devices. In this regard, reducing the number of MAC
operations of DNNs running on edge hardware accelerators will reduce the
energy consumption during inference. Optimizations have been developed
in the past few years to allow the deployment of these networks within
restricted resource environments; quantization [2], pruning [3], distillation
[4], are some of them, which are applied either during training or post-training
of the neural network. Great emphasis is also put on the development of
efficient accelerators, that reach competitive performance compared to CPUs
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and GPUs. Recent hardware accelerators include optimization techniques
such as computational reduction by zero-skipping [5][6][7], that skip zero
weight computation in and are therefore optimized for very sparse neural
networks.

Efforts have been made toward the sparsification of deep neural networks
to reduce the memory footprint of the models deployed at the edge. Prun-
ing is a method used to achieve weight [12] and feature map 13[14][15]
sparsification to remove redundant information and subsequently reduce
network computations. In SNNs, spikes and synaptic computation reduction
are mostly exploited through temporal and spatial sparsity. Temporal spar-
sity of SNNs have inspired training techniques in deep learning [16][17],
targeting time-series applications. Recently, regularization techniques have
been applied to SNN training [18][19] to increase spatial sparsity, and during
BP-trained DNNs training prior to SNN conversion [11][20][79].

3.2.3 ANN-to-SNN Conversion

Spiking neural networks can potentially save much more energy than
continuous-valued Artificial Neural Networks due to their sparse nature
and event-driven computations. While SNNs may provide a large panel of
advantages, their training is still complicated, as the current hardware and
training algorithms are not suitable to train SNN in an asynchronous manner.
Therefore, one common technique to create performant SNNs is to convert
them from a previously trained ANN.

Early attempts to convert ANN to SSN comprise the work of [70] where
neurons of a Convolutional Neural Network were transformed to leaky-
integrate and fire (LIF) neurons with refractory periods. A similar technique
[71] used a weight normalization scheme in an ANN to regulate the firing rate
of the converted SNN. Another work [72] developed a conversion method
using spiking neurons that adapt their firing threshold to reduce the number
of spikes needed to encode information.

One largely used technique of conversion of ANN to SNN has been
developed by Rueckauer [10]. It is based on scaling of the weights of the
pretrained SNN such that the firing rate of the neurons match the activation
values of the ANN. While this technique supports a wide range of layers, it
requires a long simulation time for the model to reach competitive accuracy.
Recent methods [73][74][75] adjust the threshold values of the neurons to
reduce the inference latency.



3.2 State-of-the-art of key aspects of Neural Networks 97

3.2.4 Surrogate Gradient Descent

Spiking neuron models commonly incorporate highly non-linear transfer
functions, such as the Heaviside function, to map from internal state variables
to binary output events.

S (Vmem) = H (Vmem − Vth) (3.1)

These functions often have poorly behaved or undefined derivatives. In
the example here dS/dVmem = 0 everywhere. When used in conjunction with
gradient-based optimisation methods such as error backpropagation [9], these
poorly behaved derivatives propagate to cause the gradients of parameters
to be not informative. Standard gradient-based training techniques cannot
therefore be directly applied to SNNs.

One method to work around this limitation is to define a surrogate
gradient for the SNN transfer function. In this approach the derivative of the
transfer function is defined using an auxiliary “surrogate” function, ideally
with similar behaviour to the true transfer function, but with better-behaved
derivatives. For example, instead of the non-linear Heaviside function, a
ReLU function can be used as an approximation for computing the gradient
in the backwards pass.

Ŝ (Vmem) = max (Vmem − Vth, 0) (3.2)

dS

dVmem
≡ dŜ

dVmem
= Vmem > Vth (3.3)

This method permits SNNs to be trained using gradient-based optimi-
sation algorithms such as SGD [78][79][80] and Adam [81]. Recently this
approach has been used to integrate SNNs with industry-standard automatic
differentiation libraries such as PyTorch and Jax, to permit training of deep
SNNs [82]. In this way not only the weights of a network can be optimised,
but in addition all the auxiliary parameters of an SNN such as time constants
and thresholds [82].

3.2.5 Neural Engineering Object (Nengo) Simulator

The Neural Engineering Object (Nengo) is a neural network simulation tool
for large-scale neural systems with applications in cognitive science, psy-
chology, AI, and neuroscience [25]. Nengo offers NengoDL, a deep learning
simulator, which enables for easy integration of the TensorFlow library and
access to advanced features such as convolution connections. Using a neural
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engineering framework NEF with Nengo designs neural network models for
application in machine learning and deep learning such as inductive reasoning
[27], gesture sensing [26], action selection [27], speech production [84] and
image classification [85], etc.

NengoDL uses NEF for building neuron models for building biologically
plausible neural networks. NEF provides the principles of representation,
transformation, and dynamics to construct a neural model. The NEF encodes
the incoming time varying input data of real numbers and based on the input
data; a specific amount of current is injected into a single neuron model. This
current causes the neuron to spike and the spiking behaviour is controlled by
the tuning the curve of the neuron models. The tuning curve is determined
by the bias, gain of the neuron and the encoding weights. In the decoding
stage, an exponentially decaying filter is applied to the spike train resulting in
a spike generating postsynaptic current [25].

The strength of the postsynaptic current is defined by its amplitude
which is affected by various factors. The NEF summarizes these factors
in the form of a connection weight matrix representing the strength of the
connection between two neural populations. These matrices can be factorized
into smaller matrices allowing to efficiently run large-scale neural models on
low commodity hardware [25].

An information is represented by a Nengo ensemble, and a connection
defines how the information is transformed. Nengo uses an object model
to translate the ensembles and their connections into a network of intercon-
nected neurons. In this way, it acts as a neural compiler, converting high-level
functional models to low-level models. Nengo defines six core objects as
an object model: 1) ensemble, 2) node for non-neural information such as
sensory inputs, 3) connection, 4) probe for data collection during simulation,
5) network for interconnected nodes and ensembles, and 6) model. Because
of the separation of model construction and simulation, Nengo models can be
used on a variety of simulators [25].

In addition to the biological plausible neurons, nengoDL allows to use
rate-based neurons such as LIFRate, Rectified Linear, Sigmoid and Tanh
by converting them to their spiking version using wrappers that take some
function and return an instantaneous firing rate. These wrappers are [26]:

1) Regular Spiking: takes the instantaneous firing rate and integrates it
multiplied by a timestep.

2) Poisson Spiking: Given an instantaneous rate, this wrapper draws a
sample from a Poisson distribution. The value of the distribution is this
instantaneous firing rate.



3.2 State-of-the-art of key aspects of Neural Networks 99

3) Stochastic Spiking: is kind of a mix between the two, and the dif-
ference mostly shows up when neurons can spike more than once per
timestep.

In Figure 3.2, some conversion examples are illustrated. These neurons are
created by employing Regular Spiking to convert rate-based neurons to their
spiking counterparts. For example, Figure 3.2(a) is created τref = 0.0025
indicating that the firing will saturate at 400 Hz. The neuron begins in a blank
state (i.e., no input current, no membrane current, etc.), implying that the
neurons are doing nothing when the simulations begin, and it takes a few time
steps for the neuron to get going. The curve becomes a little noisy around
the middle because the neuron has modest firing rates and so few spikes in
that area. Moreover, it can be seen that the neuron is showing two kinds of
spikes, positive and negative. Because this type of spiking behaviour isn’t
biologically reasonable, it won’t operate on most neuromorphic technology.
Similarly, Figures 3.2(b), (c), and (d) represent the spiking version of Sig-
moid, Rectified Linear and LIFRate based neuron. It should be noted that the
curve’s slope is determined by the neuron’s gain. The gain of the neurons has
been modified in these cases to produce less noisy curves.

Figure 3.2 Spiking neuron models [26].
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3.3 NN Transformation: Temporal Delta Layer

This Section focuses on a transformation applicable to DNNs which generates
temporal activation sparsity during training and exploit it during inference.

The energy consumed by running DNNs on hardware accelerators is
dominated by the number of memory read/writes and multiply-accumulate
(MAC) operations. As a potential solution, the role of activation sparsity in
efficient DNN inference is proposed. i.e., as the predominant operation in
DNNs is matrix-vector multiplication of weights with activations, skipping
operations and memory fetches where (at least) one of them is zero can make
inference more energy efficient.

In this Section, a new DNN layer (called temporal delta layer) whose
primary objective is to induce temporal activation sparsity during training
is presented. The temporal delta layer promotes activation sparsity by per-
forming delta operation through activation quantization and l1 norm-based
penalty to the cost function. During inference, the resulting model acts as a
conventional quantized DNN with high temporal activation sparsity.

3.3.1 Temporal Delta Layer: Training Towards Brain Inspired
Temporal Sparsity for Energy Efficient Deep Neural
Networks

DNNs have lately managed to successfully analyses video data to perform
action recognition [27], object tracking [28], object detection [29], etc., with
human-like accuracy and robustness. Unfortunately, the high accuracy of
DNNs comes with high compute and memory costs, resulting in high energy
consumption. This makes them infeasible for always-on edge devices.

Over the years, techniques like network pruning, quantization, regular-
ization, and knowledge distillation [30][31][32] have helped in reducing the
model size footprint resulting in overall lesser computation and memory
consumption. Noticeably, sparsity is an underlying feature in all the solutions.
This is notable, as sparse tensors provide the potential to skip computations
that involve multiplication with zeroes. Also, they are easier to store and
access in memory. Structural sparsity (of weights) and spatial sparsity (of
activations) are well-researched topics in DNN literature [33]. However,
temporal activation sparsity is comparatively less explored in the context of
DNN, although it is a popular concept in neuromorphic computing.

The concept of change or delta-based processing is taken from the human
retina to the training and inference phases of deep neural networks [34].
DNN inference which processes each frame separately with no regard to the
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temporal correlation is dense and obscenely wasteful. Whereas processing
only the changes in the network can lead to zero-skipping in sparse tensor
operations reducing redundant operations and memory accesses.

Therefore, the proposed methodology in this work induces temporal
sparsity to potentially any DNN, by means of a new layer (called Temporal
Delta Layer), which can be introduced in a DNN at any phase (training,
refinement, or inference only). This new layer can be integrated into an
existing architecture by placing it after all or some of the ReLU activation
layers as deemed computationally beneficial (see Figure 3.3).

The inclusion of this layer does not require any change to the preceding
and following layers. Moreover, during the training phase, the new layer
adds a novel sparsity penalty to the overall cost function of the DNN.
This l1 norm-based penalty minimizes the activation density of the delta

Figure 3.3 (a) Standard DNN and (b) DNN with temporal delta layer.
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maps (i.e., temporal difference between two consecutive feature maps). Apart
from that, two activation quantization methods, namely fixed-point quantiza-
tion (FXP) and learned step-size quantization (LSQ), are also compared in
conjunction with the new layer.

The inclusion of this layer does not require any change to the preceding
and following layers. Moreover, during the training phase, the new layer adds
a novel sparsity penalty to the overall cost function of the DNN. This l1
norm-based penalty minimizes the activation density of the delta maps (i.e.,
temporal difference between two consecutive feature maps). Apart from that,
two activation quantization methods, namely fixed-point quantization (FXP)
and learned step-size quantization (LSQ), are also compared in conjunction
with the new layer.

3.3.2 Related Works

Although DNNs are in essence bio-inspired, they have not been able to find
the balance between power consumption and accuracy yet, especially while
dealing with computationally heavy streaming signals. On the other hand, the
brain’s neocortex handles complex tasks like sensory perception, planning,
attention, and motor control while consuming less than 20 W [35]. Scalable
architecture, in-memory computation, parallel processing, communication
using spikes, low precision computation, sparse distributed representation,
asynchronous execution, and fault tolerance are some of the characteristics
of the biological neural networks that can be leveraged to bridge the energy
consumption gap between the brain and DNNs [36]. Among these, the pro-
posed methodology focuses on the viability of using sparsity within DNNs
to achieve energy efficiency. During a matrix-vector multiplication between
a weight matrix and an activation vector, zero elements in the tensor can be
skipped leading to computational as well as memory access reduction (see
Figure 3.4).

There are broadly two types of sparsity available in DNNs: weight spar-
sity (related to the interconnect between neurons) and activation sparsity
(related to the number of neurons). Furthermore, activation sparsity can be
categorized into spatial and temporal sparsity, which exploits the spatial
and temporal correlation within the activations, respectively, [38]. Unlike
weight and spatial sparsity [39][40][41][42][43][44], exploiting the temporal
redundancy of DNNs while processing streaming data to reduce energy
consumption is a relatively less explored idea. Exploiting temporal sparsity
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Figure 3.4 Sparsity in Δx can save multiplications between Δx and columns of W that
correspond to zero [37].

translates to skipping re-calculation of a function when its input remains
unchanged since the last update.

One of the methods to exploit temporal sparsity is to use the compressed
representation (like H.264, MPEG-4, etc.) of videos at the input stage itself.
These compression techniques only retain a few key-frames completely and
reconstruct others using motion vectors and residual error, thus using tem-
poral redundancy [45][46]. Another path includes finding a neuron model
which is somewhere in between “frame-based DNN” and “event-based spik-
ing neural networks”. This Section describes an attempt in the direction. A
similar work, CBInfer [7] proposes replacing all spatial convolution layers in
a network with change-based temporal convolution layers (or CBconv layers).
In this, a signal change is propagated forward only when a certain threshold is
exceeded. Likewise, [48] tapped into temporal sparsity by introducing Sigma-
Delta Networks, where neurons in one layer communicated with neurons in
the next layer through discretized delta activations. An issue when it comes
to CBInfer is the potential error accumulation over time as the method is
threshold-based. If the neuron states are not reset periodically, this threshold
can cause drift in the approximation of the activation signal and degrade the
accuracy. Whereas sigma-delta scheme experiments on smaller datasets like
temporal MNIST, which might not be a reliable confirmation of the method’s
effectiveness.
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3.3.3 Methodology

In video-based applications, traditional deep neural networks rely on frame-
based processing. That is, each frame is processed entirely through all the
layers of the model. However, there is very little change in going from
one frame to the next through time, which is called temporal locality.
Therefore, it is wasteful to perform computations to extract the features of the
non-changing parts of the individual frame. Taking that concept deeper into
the network, if feature maps of two consecutive frames are inspected after
every activation layer throughout the model, this temporal overlap can be
observed. Therefore, we postulate that temporal sparsity can be significantly
increased by focusing the inference of the model only on the changing pixels
of the feature maps (or deltas).

3.3.3.1 Delta inference
A new layer is introduced that calculates the delta (or difference) between
two temporally consecutive feature maps and quantifies the degree of these
changes at only relevant locations in the frame. Since zero changes are not
propagated through the layer, the role of this layer may be perceived as an
”analog event propagation”. It is considered an ”analog event” as it is not the
presence of change, but the magnitude of change that is propagated through.
To better understand it mathematically, in a standard DNN layer, the output
activation is related to its weights and input vector through Equations (3.4)
and (3.5).

Y t = WXt +B (3.4)

Zt = σ(Yt) (3.5)

where W and B represent the weights and bias parameters, Xt represents the
input vector, and Yt represents the transitional state. Then, Zt is the output
vector which is the result of s(.) - a non-linear activation function. t indicates
that the tensor has a temporal dimension. However, in the temporal delta
layer, weight-input multiplication transforms into,

ΔYt = WΔXt = W (Xt −Xt−1) (3.6)

Y t = ΔY t+ Y t− 1

= W (Xt −Xt−1) +W (Xt−1 −Xt−2) + · · ·+ Y0, where Y0 = B

= WXt +B, (3.7)

ΔZt = Zt − Zt−1 = σ(Yt)− σ(Yt−1), where σ(Y0) = 0 (3.8)
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In Equation (3.4), instead of using Xt directly, only changes or ΔXt are
multiplied with W. Using the resulting ΔYt, the corresponding Yt can be
recursively calculated with Equation (3.5), where Yt−1 is the transitional
state obtained from the previous calculation. Equation (3.8) is the final delta
activation output that is passed onto the next layer.

Another notable difference between the standard DNN layer and the
proposed layer is the role of bias. In delta-based inference, bias is only used
as an initialization for the transitional state, Y0 in Equation (1.4). However,
since bias tensors do not change over time, their temporal difference is zero
and is removed from Equation (3.6).

Now, as the input video is considered temporally correlated, the expec-
tation is that ΔXt and by association ΔZt are also temporally sparse. In
essence, the temporal sparsity between consecutive feature maps is cast on
the spatial sparsity of the delta map that is propagated. Additionally, Yt in
Equations (3.4) and (3.7) are always equal. This indicates that if the input is
the same, both standard DNN and temporal delta layer based DNN provide
the same result at any time step.

3.3.3.2 Activation quantization to induce sparsity
There is temporal redundancy evident in feature maps of two consecutive
frames. However, if looked closely, it can be observed that these feature maps
are similar but not identical as shown in Figure 3.5(a) and (b). Therefore, if
two such consecutive feature maps are subtracted, the resulting delta map
has many near zero values, thus restricting the potential increase in temporal
sparsity, Figure 3.5(c). This is mainly due to the higher precision available
in the floating-point representation (FP32) of the activations. For example, in
IEEE 754 representation, a single precision 32-bit floating point number has
1 bit for sign, 8 bits for the exponent and 23 bits for the significant. It not
only leads to a very high dynamic range, but also increases the resolution or
precision for numbers close to 0. The number nearest to 0 is about ±1.4 x
10−45. Therefore, due to high resolution, two similar floating-point values
have difficulty going to absolute zero when subtracted. A plausible solution
to decrease the precision of the activations is to use quantization.

A post-training quantization method (fixed point quantization [49]) and a
quantization aware training method (learnable step size quantization [50])
are considered for comparison as a temporal sparsity facilitator for the
new layer.
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Figure 3.5 Demonstration of two consecutive activation maps leading to near zero deltas.

3.3.3.3 Fixed point quantization
In this method, the floating-point numbers are quantized to integer or fixed-
point representation [49]. Unlike floating point, in fixed point representation,
the integer and the fractional part have fixed length. This limits both range
and precision. That is, if more bits are used to represent the integer part, it
subsequently decreases the precision and vice versa.

Method: firstly, a bit-width is defined to which the 32-bit floating parameter
is to be quantized, BW. Then, the number of bits required to represent
the unsigned integer part of the parameter (x) is calculated as shown in
Equation (3.9).

I = 1 + �log2(max|x|)� 1 < i < N (3.9)

A positive value of I means that I bits are required to represent the
absolute value of the integer part, while a negative value of I means that the
fractional part has I leading unused bits. Now, it is known that 1 bit is for
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sign, so the number of fractional bits, F, is given by Equation (3.10).

F = BW − I− 1 (3.10)

Considering the parameters, BW - bit-width, F - fractional bits, I - integer
bits, and S - sign bit, Equation (3.11) maps the floating-point parameter x to
the fixed point by,

Qx =
C(R(x · 2F ),−t, t)

2F
(3.11)

where R(.) is the round function, C(x,a,b) is the clipping function, and t is
defined as,

t =

{
2BW−S , BW > 1

0 BW ≤ 1

The fixed-point quantization, as shown above, is a straightforward map-
ping scheme and is easy to be included in the model training process during
the forward pass before the actual delta calculation. However, it poses a
limitation to the extent of quantization possible without sacrificing accuracy.
Typically, an 8-bit quantization can sustain floating point accuracy with this
method, but if the bit-width goes below 8 bits, the accuracy starts to deterio-
rate significantly. This is because, unlike weights, activations are dynamic and
activation patterns change from input to input making them more sensitive
to harsh quantization [51]. Also, quantizing the layers of a network to the
same bit-width can mean that the inter-channel behaviour of the feature
maps is not captured properly. Since the number of fractional bits is usually
selected depending on the maximum activation value in a layer, this type
of quantization tends to cause excessive information loss in channels with a
smaller range.

3.3.3.4 Learned step-size quantization
Quantization aware training is the most logical solution to the drawback as
it can potentially recover the accuracy in low bit tasks given enough time
to train. Therefore, a symmetric uniform quantization scheme is considered
called Learned Step size Quantization (LSQ). This method considers the
quantizer itself as a trainable parameter which is trying to minimize the task
loss using backpropagation and stochastic gradient descent. This serves two
purposes: (a) step size, which is the width of quantization bins, gets to be
adaptive through the training according to the activation distribution. It is
vital to find an optimum step size because, as shown in Figure 3.6, if the step
size is too small or too large, it can lead to the quantized data being a poor
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Figure 3.6 Importance of step size in quantization: on the right side, in all three cases, the
data is quantized to five bins with different uniform step sizes, but without optimum step size
value, the quantization can alter the range and resolution of the original.

representation of the raw data. (b) as the step size is a model parameter, it is
also directly seeking to improve the metric of interest, i.e., accuracy.

Method: given: x - the parameter to be quantized, s - step size, QN and QP
- number of negative and positive quantization levels respectively, and q(x;s)
is the quantized representation with the same scale as x,

q(x; s) =

⎧⎪⎨
⎪⎩
[
x
s

] · s if −QN ≤ x
s ≤ Qp

−QN,s
x
s ≤ −QN

−QP,s
x
s ≥ −QP

(3.12)

where �a� rounds the value to the nearest integer. Considering the number of
bits, b, to which the data is to be quantized, QN = 0 for unsigned and QN

= 2b−1 for signed data. Similarly, QP = 2b−1 for unsigned and 2b−1 − 1 for
signed data.

The original LSQ method is slightly modified to remove the clipping
function from the equations as (a) the bit-width, b, required to calculate
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QN and QP is not known. This is because the bit-width is not pre-defined
and is determined using the activation statistics of each layer while training
which leads to a mixed precision model, which is more advantageous, and (b)
clipping leads to accuracy drop as it alters the range of the activation. That
is, if activations are clipped during training, there could be a significant dif-
ference between the real-valued activation value and the quantized activation
value, which in turn affects the gradient calculations and, therefore, the SGD
optimization.

Thus, in temporal delta layer, the forward pass of the quantization
includes only scaling, rounding and de-scaling and can be mathematically
expressed as,

q(x; s) =
[x
s

]
· s (3.13)

The gradient of the Equation (1.10) for backpropagation is given by
Equation (3.14.)

∇sq(x, s) =
[x
s

]
− x

s
(3.14)

3.3.3.5 Sparsity penalty
The quantized delta map, created using the above-mentioned methods, has
a fair number of absolute zeroes (or sparsity) available. However, like the
biological brain, learning can help in increasing this sparsity further. The
inspiration for this came from an elegant set of experiments performed by Y.
Yu et al. [52]. The experiment showed a particular 30 second video to rodent
specimens and tracked their activation density during each presentation. It
was found that activation density decreased as the number of trials increased,
i.e., as the learning increased, the active neurons required for inference
decreased. Adapting the said concept to this work, a l1 norm-based constraint
is introduced to the loss function. This is termed as the sparsity penalty.
Therefore, the new cost function can be mathematically expressed as cost
function = task loss + sparsity penalty, i.e,

Cost function

= Task loss+ λ

(
l1 norm of active neurons in delta map

total number of neurons in delta map

)
(3.15)

where task loss minimizes the error between the true value and the predicted
value and, sparsity penalty minimizes the overall temporal activation density.
The λ mentioned in Equation (1.12) refers to the penalty co-efficient of the
cost function. If λ is too small, the sparsity penalty takes little effect and



110 Tools and Methodologies for Training, Profiling, and Mapping

model accuracy is given more priority and if λ is too large, sparsity becomes
the priority leading to very sparse models but with unacceptable accuracy.
The key is to find the balance between task loss and sparsity penalty.

3.3.3.6 Proposed algorithms
Putting it all together, two algorithms are presented. One uses delta calcu-
lations and sparsity penalty concepts with fixed point quantization, and the
other uses modified learned step size quantization. The flow charts of the
methodology are given in Figures 3.7 and 3.8.

3.3.4 Experiments and Results

The proposed methodology is analysed to study how it helps to achieve the
desired temporal sparsity and accuracy.

3.3.4.1 Baseline
For baseline, the two-stream architecture [53] was used with ResNet50 as
the feature extractor on both spatial and temporal streams. The dataset used
was UCF101, which is a widely used human action recognition dataset of
’in-the-wild’ action videos, having 101 action categories [54]. The spatial
stream used single-frame RGB images of size (224, 224, 3) as the input, while
the temporal stream used stacks of 10 RGB difference frames of size (224,
224, 10 × 3) as the input. Also, both these inputs were time distributed to
apply the same layer to multiple frames simultaneously and produce output
that has time as the fourth dimension. Both the streams were initialized with
pre-trained ImageNet weights and fine-tuned with an SGD optimizer.

Under the above-mentioned setup, spatial and temporal streams achieved
an accuracy of 75% and 70%, respectively. Then, both streams were average
fused to achieve a final classification accuracy of 82%. Also, in this scenario,
both streams were found to have an activation sparsity of about 47%.

3.3.4.2 Experiments
Scenario 1: The setup consecutively places the fixed-point based quantiza-
tion layer and temporal delta layer after every activation layer in the network.
The temporal delta layer here also includes a l1 norm-based penalty. Fixed
point quantization, in this setup, is used to decrease the precision of input
activation maps. Both techniques promote temporal sparsity

The baseline weights were used as a starting point, and all the layers
including the temporal delta layer is fine-tuned until acceptable convergence.
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Figure 3.7 Methodology flow of temporal delta layer with fixed point quantization.

The hyper-parameters specifically required for this setup were bit width (to
which the activations were to be quantized) and penalty co-efficient to balance
the tussle between task loss and sparsity penalty

Scenario 2: The setup is like the previous scenario except for the activation
quantization method used. The previous experiment used fixed precision
quantization where all the activation layers in the network were quantized
to the same bit width. However, this experiment uses learnable step-size
quantization (LSQ), which performs channel-wise quantization depending
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Figure 3.8 Methodology flow of temporal delta layer with learned step size quantization.
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on the activation distribution resulting in mixed-precision quantization of the
activation maps. The layer also introduces a hyperparameter during training
(apart from the penalty coefficient mentioned earlier) for the step size initial-
ization. Then, during training, the step size increases or decreases depending
on the activation distribution in each channel.

3.3.4.3 Accuracy v/s Activation sparsity
Tables 3.1 and 3.2 show the baseline accuracy and activation sparsity
compared against the two scenarios mentioned.

Firstly, when the temporal delta layers with fixed point quantized activa-
tions are included in the baseline model, it can be observed that the activation
sparsity increases considerably with a slight loss in accuracy. One interesting
observation is that, although the sparsity penalty in the temporal delta layer
does a good job of decreasing the activation density, quantizing the activations
from floating to fixed point representation pushes the activation sparsity of the
model even higher. This is because lowering the precision from 32 bits to 8
bits (or less) leads to temporal differences of activations going to absolute
zero.

Additionally, the reason for close-to baseline accuracy in the method
involving fixed point quantization can be attributed to fractional bit allocation
flexibility. That is, as the bit width is fixed, the number of integer bits required
is decided depending on the activation distribution within the layer, and
the rest of the bits are assigned as fractional bits. This makes sure that the
precision of the activation is compromised for range.

Also, another contributing factor for accuracy sustenance is that the first
and the last layers of the model are not quantized, similar to works like
[55][56][57]. This is because the first and last layer has a lot of information
density. Those are the layers where input pixels turn into features and features
turn into output probabilities, respectively, which makes them more sensitive
to quantization.

Table 3.1 Spatial stream - comparison of accuracy and activation sparsity obtained through
the proposed scenarios against the benchmark. In the case of fixed-point quantization, the
reported results are for a bit width of 6 bits.
Model setup (Spatial stream) Accuracy Activation sparsity
Baseline 75% 48%
Temporal delta layer with fixed point quantization 73% 74%
Temporal delta layer with learned step-size
quantization

69% 86%
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Table 3.2 Temporal stream - comparison of accuracy and activation sparsity obtained
through the proposed scenarios against the benchmark. In the case of fixed-point quantization,
the reported results are for a bit-width of 7 bits.

Model setup (Temporal stream) Accuracy Activation sparsity

Baseline 70% 47%

Temporal delta layer with fixed point quantization 68% 67%

Temporal delta layer with learned step-size
quantization

65% 89%

Although the activation sparsity gain in the case of the temporal delta
layer with fixed point quantization is better than the baseline, it is still not
sufficiently high as required. In this effort, the bit-width of the activations
are decreased in the expectation of increasing sparsity. However, as the bit-
width goes below a certain value (6 bits for spatial and 7 bits for temporal
stream), sparsity increases, but accuracy starts to deteriorate beyond recovery,
as shown in Table 3.3. This is because quantizing all layers of a network to
the same bit-width can mean that the inter-channel variations of the feature
maps are not fully accounted for. Since the number of fractional bits is usually
selected to cover the maximum activation value in a layer, the fixed bit-width
quantization tends to cause excessive information loss in channels with a
smaller dynamic range. Therefore, it can be inferred that mixed-precision
quantization of activations is a better approach to obtain good sparsity without
compromising accuracy.

Finally, using the temporal delta layer where incoming activations are
quantized using learnable step-size quantization (LSQ) gives the best results
for both spatial and temporal streams. As the step size is a learnable param-
eter, it gives the model enough flexibility to result in a mixed precision

Table 3.3 Result of decreasing activation bit-width to increase activation sparsity while
maintaining accuracy. For spatial stream, decreasing below 6 bits caused the accuracy to drop
considerably. For temporal stream, the same happened below 7 bits.

Spatial stream Temporal stream
Activation
bit-width

Accuracy
(%)

Activation
sparsity (%)

Accuracy
(%)

Activation
sparsity (%)

32 75 50 70 47
8 75 68 70 65
7 75 71 68 70
6 73 75 61 73
5 65 80 - -
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Figure 3.9 Evolution of step size from initialization to convergence. As step-size is a
learnable parameter, it gets re-adjusted during training to cause minimum information loss
in each layer.

model, where each channel in a layer has a bit-width that suits its activation
distribution. This kind of channel-wise quantization minimizes the impact of
low-precision rounding.

It is also evident in Figure 3.9 that as the training nears convergence,
the values of the step size differ according to the activation distribution and
bit width required to represent each layer. Moreover, consistent with the
literature [58], the first and last layers during training opts for smaller step
sizes implying they need more bandwidth for their representation.

The weights generated using this method was then average fused to find
the final two-stream network accuracy and activation sparsity (Table 3.3).
Finally, the proposed method can achieve 88% activation sparsity with a 5%
accuracy loss.

3.4 NN Compiler for Dedicated Inference Accelerator
Hardware with Analog In-Memory Computing

This section explains the role of NN compilers in inference hardware accel-
erator as well as the methodology to follow to implement and evaluate one.
To map the tasks of an NN algorithm to a dedicated hardware with analog
in-memory computing for inference, a compiler is needed to automatically
generate the instruction set that would provide better performance on the
dedicated hardware. The input of such compiler is the trained NN algorithm
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as well as the hardware architecture of the inference accelerator while the
output is the executable set of operations. Therefore, the NN algorithm can
only have the type of layers supported on the hardware.

NNs consist of large amounts of Multiplication-and-Accumulation
(MAC) operations. Therefore, analog in-memory computation accelerators
are ideal to perform such operations. However, different sizes, shapes and
bit resolutions make challenging to map NNs on analog crossbar arrays.
Nowadays multi-core analog accelerators are becoming very popular for NN
inference [64][65]. Each accelerator core consists of an analog crossbar array
surrounded by ADCs, DACs and digital logic (FSMs, etc.). Multiple process-
ing cores are connected via NoC (Network-on-Chip), which is used to transfer
data between processing cores. Moreover, analog crossbar arrays are not fixed
anymore. State-of-the-art crossbar arrays consist of small crossbar elements
which can be horizontally or vertically concatenated using programmable
switches. The programmability of crossbar makes them very flexible. The
crossbar performs multiplications, and the digital logic configures the cross-
bar switches and controls data flow (weights and activations, etc.) to the
crossbar. However, the flexible architecture and constraints of modern ana-
log accelerators pose a challenge in terms of NN workload, mapping, and
scheduling. The traditional mapping techniques such as loop tiling, and
loop interchange are not efficient anymore [66]. Moreover, the digital FSMs
controlling the crossbar and NoC also require a complex instruction set. To
the best of our knowledge, there are no commercial compilers available which
can be used to map NN workloads and generate the instruction set for flexible
and multi-core analog in-memory accelerators.

3.4.1 Compiler Components

The compiler consists of three main components: hardware architecture,
parser, and mapper, see Figure 3.10. The unique architecture and constrains
of the dedicated inference accelerators require the compiler to consider hard-
ware specifications and constraints while mapping NN workloads. Therefore,
the compiler generates a hardware representation of the accelerator using the
specifications. The compiler also contains a parser that parses the information
of each NN node and converts it into a specific data structure. By using the
hardware representation and the parsed NN the mapper generates a mapping
in the form of instructions for the FSMs.
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Figure 3.10 Overview of Compiler Tool.

3.4.2 ONNX Parser

The trained networks are stored using ONNX with a custom export to store
additional information such as quantization. The custom ONNX file is parsed
by a custom ONNX Parser to extract the information needed by the mapper.
This parser parses every graph node of the ONNXmodel and creates a Python
data structure to ease access to information and attributes. The parsed model
is a list of nodes and each one stores relevant information. The list of nodes
includes:

• Input contains information about the input layer
• Conv contains information regarding convolution layers
• MatMul contains the parameters of fully connected layers
• Add is pointwise addition
• Mul is pointwise multiplication
• Div is a pointwise division
• Act contains activation functions
• Squeeze and Unsqueeze to remove or add singleton dimension when
needed.

Moreover, the parser allows the user to fuse the information of consecutive
nodes if these nodes follow a certain pattern, e.g., Conv layer followed by
one or more of Add, Mul, Div or Act layers are fused together, as shown
in Figure 3.11. The fused information is stored in the parsed fused model.
The layers are combined when their computations can/should be carried out
by same processing core in one computing cycle to minimize data exchange.
The parsed fused model is used by the compiler to pre-process and generate
instructions to run the NN on the hardware.



118 Tools and Methodologies for Training, Profiling, and Mapping

Node Fused Node

MatMul PatternConv Pattern

ONNX Model

Parse

ConvMatMul

MulDiv Add

Act SqueezeUnsquee
ze

Input

Parsed Model
List of Nodes Fuse

Fused Model
List of Nodes, 
Fused_Nodes

Mul

Div

Add

Act

Mul

Div

Add

Act

Figure 3.11 ONNX Parser diagram of parsing and fusing the input ONNX model into a list
of Nodes and Fused Nodes.

3.4.3 Hardware Architecture Representation

The hardware architecture representation component allows the compiler to
support arbitrary number of processing cores and crossbar array configura-
tions. It generates blueprint of available computation resources for each core
according to the configurations and constraints.

The input parameters include the hardware specifications and constrains
like crossbar specifications, number of processing cores, memory sizes, etc.
When the architectural parser is invoked, it generates a blueprint of the
FSMs, the processing cores and the NoC controller. The NoC controller is
responsible for data transfer between processing cores and the FSMs for the
storage of the weights on the crossbar array, providing the input data to the
crossbar array according to the input specifications of each layer and handling
the output results of the crossbar array.
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3.4.4 Mapper

The mapper analyses the parsed NN and available computation resources on
the hardware to map the NN workload into the processing cores. Figure 3.12
shows the flow of the mapper.
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Figure 3.12 Mapping flow of the Compiler.
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The mapper maps a NN workload layer by layer. Analog crossbars
perform computations using vector-matrix multiplications. Therefore, the
compiler converts different NN workloads into vector-matrix multiplications.
Moreover, the compiler also schedules the data transfers between processing
cores. The weights are converted into a matrix representation and stored in
crossbar memory columns and inputs are converted into vectors and fed to
crossbar rows using DACs. The mapper determines the required hardware
resources for every layer and then it checks how many filters of a layer can
be mapped on the current processing core. If there is enough space to map
all filters of a layer, then all filters are mapped to the current processing core.
Otherwise, a layer is partially mapped to a processing core and remaining
filters are mapped to the next core. Similarly, when all processing cores
are utilized, the mapper starts mapping again from the first processing core
for the next computation. The mapper keeps increasing the computation
cycle until the whole NN workload is mapped. When mapper maps the NN
workload to a part of processing core, that part is marked as utilized and the
parameter values in all FSMs are set according to the mapping. After mapping
a workload to each processing core, the compiler generates instructions sets
that can be decoded on the dedicated hardware to generate sets of parameters,
which are then used to configure the processing cores.

3.4.5 Mapping Strategy

The crossbar array of a processing core is composed of multiple rows and
columns of analog synaptic weights performing MAC operations. The cross-
bar allows to map either fully connected layers or convolutional layers with
different kernel sizes.

Figure 3.13 shows the mapping strategy of how a small CNN with two
convolution layers has been mapped to a crossbar array of a processing core.
Each black rectangle represents 16x4 synaptic weights. The input size is
13x64, the kernel sizes of Conv1 and Conv2 are 4x4x1, with 16 filters, and
3x3x16, with 8 filters, respectively, and the output size is 3x29x8. According
to the compiler flow, the compiler checks first for available resources in the
processing core and then determines how many synaptic weights are required
to map a layer. At the beginning, since the whole processing core is available
and the Conv1 filters are small, Conv1 layer can be fully mapped. The filters
of Conv1 are converted into vectors and mapped to crossbar like a matrix.
The Conv1 filters’ vectors are small, and each filter requires 4x4x16 synaptic
weights. Similarly, filters of Conv2 are also converted to a vector and mapped.
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Figure 3.13 Mapping of layers 1 and 2 on processing core 1.

Since Conv2 layer consists of large filters, it requires 3x3x16x8 synaptic
weights. The mapper will evaluate if enough synaptic weights are available
in the same processing core at which Conv1 was mapped. If it is not the case,
a new processing core will be used for mapping Conv2 layer.

3.4.6 Mapping of Deep Spiking NN Architectures to Digital SNN
Inference Devices

This section presents an approach for mapping arbitrary deep SNN network
architectures onto fixed-architecture inference devices. As example, a device
is considered with a single population of hidden neurons, supporting a fixed
number of synaptic inputs per neuron, and with a limited number of input and
output neurons (see Figure 3.14).
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Figure 3.14 A HW architecture for SNN inference.

This architecture supports a fixed maximum number of input channels
Nin; a fixed maximum number of hidden neurons Nhid; and a fixed maximum
number of output neurons Nout. The neurons are LIF spiking neurons, sup-
porting several synaptic inputs Nsyn. This architecture implements a single
hidden population with the possibility of recurrent weights Wrec. Multi-
layer networks must be mapped into this single hidden population using
the recurrent weights. Other logical weight blocks are supported for input
weights Win and output weights Wout. These weight matrices are assumed
to be sparse, with a limited maximum fan-in NF per neuron. Only on-zero
weights are stored, with weights linearised into memory blocks of fixed
maximum size NF * N. Figure redrawn from [82].

A mapping system must be flexibly to accommodate a wide range of SNN
network architectures, including recurrent spiking populations (e.g., reservoir
networks and other recurrent architectures; deep feed-forward architectures;
and residual network architectures. An example of a deep spiking network
making use of all these architectural elements is shown in Figure 3.14. Several
LIF spiking neuron layers (“LIF”; orange) are connected via weight blocks
(“W”; blue). The first LIF layer “LIF1” is recurrently connected with weights
“Wrec”. Residual blocks (dashed) include additional connections bypassing
the blocks inside.
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Figure 3.15 An example of a deep spiking network that will be mapped to a HW
architecture.

To map the network onto the HW architecture shown in Figure 3.15,
several steps are taken.

1. Graph extraction: Convert the simulation modules from a high-level
representation to a standardised set of graph modules. These graph
modules individually represent the weights and neuron populations in
the network, as well as embodying a traversable graph that accurately
corresponds to the computations and information flow in the network.

2. DRC check: Perform a design-rule-check to ensure that the network is
compatible with the hardware architecture.

3. HW mapping: Assign the network logical resources to available hard-
ware resources.

4. Parameter configuration:Assign network parameters to appropriate HW
memory blocks and serialise to a bitstream to configure the HW.

3.5 Simulator/Profiler

When implementing a neural network topology on an embedded hardware
target, it is critical to do it being able to profile that network and to sim-
ulate it, by considering the hardware architecture for extracting the right
power/performance/latency figures. Profiling a network means extracting key
parameters of interest when fed with representative data. This obviously
relates to the number of parameters and number of operations, which is
readily available for a given topology, but not only. To choose the right
hardware target and optimize the mapping of the network or its graph trans-
formation, the data volume and data bandwidth per layer are also needed.
Counter intuitively, the highest data bandwidth does not occur in the layers
with the higher number of parameters. This is illustrated in the figures below,
considering a popular network topology for embedded applications, i.e., a
MobileNet V1.
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Figure 3.16 depicts the number of parameters per layer: the deeper the
layer, the higher the number of parameters. The depth wise convolution layers
use less parameters than the pointwise convolution layers since they use 2D
filters instead of 3D ones.

But, as can be seen in Figure 3.17, the first layers are the ones having
the biggest data volume. This is because there are more parameters reused on
those first layers.
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Figure 3.16 MobileNet V1 parameters per layer.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

In
pu

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Layer 

D
at

a 
vo

lu
m

e 
(n

or
m

al
iz

ed
 to

 in
pu

t 
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Figure 3.18 MobileNet V1 bandwidth (Gb/s) at each layer.

This profiling shows that it is more important to keep the data locally for
layers 1 to 12 to minimize data movement: thus, a data-flow architecture for
those layers might be a good fit.

Figure 3.18 also shows the impact of stride on data volume reduction. For
instance, layers 1, 4, 8 and 24 have a stride of 2.

The data bandwidth is obviously proportional to the size of the input
image and number of images per second. Figure 3.20 illustrates the band-
width for a 30FPS, 1280x720p, 8b RGB input. The intermediate layers use
4b activations in this case.

Depending on the application, i.e., segmentation, detection, classification,
different layers can be exploited. Those layers are highlighted in orange.
For object detection, the most important layers are number 27 and 23. For
segmentation, layers number 7 and 11 can be exploited, with layer 7 having
a higher bandwidth and thus a higher definition.

To obtain those figures, the N2D2 [67][68] (Neural Network Design
& Deployment) dedicated framework is used in ANDANTE for deploying
neural networks on digital hardware targets, see Figure 3.19.

For optimizing a network, N2D2 considers applicative performance met-
rics to be achieved and the hardware target memory capacity. It exploits spar-
sity of weights by implementing state-of-the-art quantization-aware training
methods, such as SAT and LSQ. Finally, N2D2 can address several hardware
targets, generating bit streams or configuration files, but it can also be used
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Figure 3.19 N2D2: Neural Network Design & Deployment.

for driving architecture exploration. In such a case, a graph transformation
is necessary for accurately performing the simulation and obtaining the Key
Parameters of Interest.

Figure 3.20 shows the three steps needed for converting a topology to
target a pipelined DNN architecture:

1. The selection of the pre-templated architecture to be used for imple-
menting each layer type (sub-steps a and b in the figure below).

 

Figure 3.20 Process flow: (a,b) conversion of the neural network to the hardware represen-
tation, (c) tuning of the layer parallelism at architectural level, (d) tuning of the buffer, (e)
post-processing.
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2. The configuration of the resources used, in each architecture, in terms of
parallelism and buffer (sub-steps c and d).

3. The network parameters post-process (sub-step e).

This enables to tune various architecture parameters, such as the parallelism
of each layer, the buffer, etc. and assess their impact.

The first two steps, architecture selection and hardware resource config-
uration, are performed using a ROI algorithm. Each layer of the network is
associated with a hardware architecture corresponding to the type of opera-
tion carried out in the layer. Several architectural models can be considered
for a given layer type; in which case the best suited architecture is selected
for that layer.

At the end of these steps, a graph of configured architectures is obtained,
that ensures the smooth running of the calculation throughout the pipeline.
Those “hardware-aware” simulations prove to be much more accurate in
terms of energy efficiency and latency, while being bit-equivalent to high level
simulations.

3.6 Conclusions

3.6.1 On NN Model Transformation

Intuitively, the new temporal delta layer [63] casts the temporal activation
sparsity between two consecutive feature maps into spatial activation sparsity
of their delta map. This spatial sparsity is then exploited to reduce compu-
tations and memory access when performing sparse tensor multiplications
in hardware. As shown in 3.4 proposed method resulted in 88% activation
sparsity with an accuracy drop of 5% on UCF-101 dataset for human action
recognition.

Table 3.4 Final results on 2 stream networks after average fusing the spatial and temporal
stream weights. With 5% accuracy loss, the proposed method almost doubles the activation
sparsity available in comparison to the baseline

Baseline Proposed method
Model type Accuracy

(%)
Activation
sparsity (%)

Accuracy
(%)

Activation
sparsity (%)

Spatial stream 75 50 69 86
Temporal stream 70 46 65 89
Two-stream
(Average fused)

82 47 77 88
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The collateral advantage of temporal sparsity is that the computations
does not increase linearly with the increase in frame rate. In standard DNN,
doubling the frame rate naturally would require double the computations.
However, in the case of temporal delta layer-based model, increasing the
frame rate would not only increase the temporal precision of the network but
also increase the temporal sparsity limiting the computations required [59].

The drawback of using temporal delta layer derives from its requirement
to keep track of the previous activations to perform delta operations. This
increases the overall memory footprint which in turn increases the reliance
on off-chip memory. For instance, external DRAM memory consumes two
orders of magnitude more energy than SRAM [60]. However, the increasing
popularity of new memory technologies (like resistive RAM [61], embedded
Flash memory [62], etc.) may improve the cost calculations in the near future.

3.6.2 On NN Compiler for Dedicated Inference Accelerator
Hardware with Analog In-Memory Computing Conclusion

The main objectives for a compiler tool are maximize hardware utilization,
maximize throughput, and minimize latency. However, there is always a
trade-off between these objectives since not all of them can be achieved at
the same time. Therefore, in the particular methodology described in Section
4 maximum utilization of hardware resources is the focus. The mapping
algorithm checks the resources needed for allocating each layer of the NN.
Afterwards checks for the available resources on the hardware and tries to
find the optimum mapping to fully utilize each processing core.

3.6.3 Simulator/Profiler

Profiling a neural network is essential when considering deploying it on an
embedded hardware target. Indeed, for choosing the right target and correctly
mapping the network on it, one obviously needs to know the number of
parameters (for the memory footprint), the number of operations (for the
number of processing elements in a latency-constrained implementation)
but also the data bandwidth and data volume. Such a simulation/profiling
environment is developed and used in the ANDANTE project. It allows to
assess the impact of quantization (even mixed quantization depending on
the layers), to identify the most adequate layers for e.g., object detection or
image segmentation (in terms of data bandwidth). It can also guide archi-
tecture exploration, with a mix of spatially expanded and spatially folded
architecture, and the needed graph transformations.
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Abstract

Emerging non-volatile memories (eNVMs) face problems such as insufficient
ROFF/RON-ratio and limited memory operating window that significantly
deteriorate the precision of multiply-accumulate computations (MACs), the
core computation of artificial intelligence algorithms, using crossbar-based
analogue resistive compute-in-memory (CIM) structures. Properly selecting
between single-ended and pseudo-differential structures is the fundamental
for the most efficient use of the advantages of a particular eNVM, where,
e.g., ferroelectric field-effect-transistors (FeFETs) have a large ROFF/RON-
ratio as a great advantage but a significant variability between devices due to
the current technology maturity. By investigating and modelling both struc-
tures, the results demonstrate that the pseudo-differential structure requires
a larger combined operating window from eNVM cells. The reason relies
on a statistically enlarged state variation with an increasing number of input
channels in the pseudo-differential structure, while the difference between
the means of memory’s state distributions remains unchanged. Compared to
pseudo-differential structures, single-ended structures require a much higher
ROFF/RON-ratio from resistance-switching memories, while the requirement
for process variation can be relaxed. The results indicate that FeFETs can be
well suited to single-ended crossbar-based structures. However, the consider-
able state variation of FeFETs makes the applications of FeFETs as resistive
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synapses hard suited into practice. After investigating existing methods, a
gate-cascaded synapse with a higher ROFF/RON-ratio and a significantly
enlarged operating window is proposed. This article discusses boundary
conditions for using eNVMs such as FeFETs in crossbar-based analogue
MAC accelerating units from a circuit design perspective.

Keywords: Ferroelectric Field-Effect Transistor, Compute-In-Memory,
Resistive Synapses, Multiply-Accumulate Computations, Analog MAC
Accelerator, Dot-Product Accelerator, Emerging Non-Volatile Memories,
Crossbar

4.1 Introduction and Background

Emerging non-volatile memory-based CIM is attracting widespread interest
in the field of integrated circuit (IC) design on account of its great potential
for enabling a highly parallel analogue (or multi-bits) computation to accel-
erate MACs in artificial intelligence algorithms sharply [1]. The FeFET, one
of the eNVMs, has been studied and implemented for accelerating MACs
using its programmable switching property [2][3][4][5], where its threshold
voltage can be programmed by adapting the polarization of the ferroelec-
tric layer on the top of the transistor’s gate, as illustrated in Figure 4.1.
Like using other resistance-switching eNVMs (e.g., ReRAM, OxRAM) for
crossbar-based MAC accelerators, FeFETs must fulfil requirements such as a
reasonably large ROFF/RON-ratio, and a sufficient operating window to allow
an analogue (multi-bits) computation [6].

Unfortunately, according to the current technology maturity but also
the fact that the techniques with smaller sizing dimensions have often a
more significant variation, using eNVMs with a minimal size likes FeFETs
in a resistive crossbar-based accelerator must face a considerable process
variation as shown in Figure 4.1(c), which causes an insufficient operating
window, and consequently, leads to an unpromising inference computation
precision. Due to this fact, implementing accelerators with either binary states
(On or Off) [7] or few bits [8] become an intermediate step towards to fully
analogue computation, and significant power efficiencies of 532 TOP/W and
over 10000TOPS/W for binary computations are achieved for particular use
cases, respectively. However, further improving the efficiency and accuracy
of FeFET-based accelerators requires knowledges of the fundamental design
challenges of crossbar-based MAC accelerators.
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Figure 4.1 (a) shows FeFETs’ abstract structure (modified from [9]), where a ferroelectric
layer is placed at the top of the transistor’s gate. The threshold voltage of FeFETs can
be programmed by adapting the polarity of the ferroelectric layer and coded as shown in
(b). (c) illustrates possible cumulative distribution functions (CDFs) of real FeFET’s cur-
rent in High-/Low-VTH states, where a state-overlap happens, and the operating window
vanishes.

This article shows how to select an optimal structure out of single-
ended and pseudo-differential read-out schemes for a particular eNVM.
Furthermore, this article discusses the scenarios using FeFETs for two above
mentioned structures and how to deal with a limited FeFET’s operating
window in synapse design.

4.2 Requirements of Crossbar Structure on eNVMs

Figure 4.2 shows single-ended (a) and pseudo-differential (b) structures
of analogue crossbar-based MAC accelerating units, where the resistive
synapses in the pseudo-differential structure is realized by two resistance-
switching devices with oppositely programmed states instead of utilizing
a single device in single-ended structures. The computations performed
using the single-ended, and pseudo-differential structures can be written as
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Figure 4.2 Implementations of analogue MAC accelerating units using single-ended (a) and
pseudo-differential (b) structures are shown.

Equations (4.1a) and (4.1b), respectively.

VOUT, x =

∞∑
y=0

(V REF − VIN,x) · Rout

Rx, y
, (4.1a)

VOUT, x =

∞∑
y=0

(V REF − VIN,x) ·Rout · ( 1

Rx, yp

− 1

Rx, yn

), (4.1b)

where x and y represent the output channel and input channel as shown in
Figure 4.2. The critical scenario happens for single-ended structures if only
one resistive synapse is programmed to low-resistance state (LRS) RON and
the others are programmed to high-resistance state (HRS) ROFF. In order
to ensure that the output voltage is still can be distinguished, the following
condition has to be met:

(N − 1) · (V IN,max − VREF ) / ROFF 
 (V IN,max − VREF ) / RON ,
(4.2)

where N is the total number of input channels. The total on- and off-currents
in the single-ended structure can be represented by Equations (4.3a) and
(4.3b).

ION(a) = (V IN,max − VREF ) / RON (4.3a)

IOFF (a) = (N − 1) · (V IN,max − VREF ) / ROFF (4.3b)
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By simplifying Equation (1.2), the final requirement for on-/off-resistance
can be given:

ROFF

RON
� (N − 1) . (4.4)

The pseudo-differential structure has a different critical scenario, where
(N/2 + 1) synapses are positively programmed, and others are negatively
programmed. Its total on-current ION(b), and off-current IOFF(b) can be
represented as:

ION(b) = (V IN,max − VREF ) · {(N/2 + 1)/RON + (N/2− 1)/ROFF }
(4.5a)

IOFF (b) = (V IN,max − VREF ) · {(N/2 + 1)/ROFF + (N/2− 1)/RON}
(4.5b)

The required on-/off-resistance can be derived from required on-/off-
current as

IOFF (b) 
 ION(b), (4.6)

so that
ROFF

RON
� 1. (4.7)

Equation (4.4) and (4.7) indicate that the pseudo-differential structure has
a much relaxing requirement on the ROFF/RON-ratio. However, the process
variation can more easily make the computation with the pseudo-differential
structure fail.

Considering the resistance variation of eNVMs as

XON∼N
(
μON , σ2

ON

)
and XOFF∼N(μOFF , σ

2
OFF ), (4.8)

and assuming that the resistance variation is independent from devices to
devices (joint normally distributed), the distributions of the total resistance
for on-/off-current in the single-ended structure can be written as

YRON(a)∼N(μON , σ2
ON ) (4.9a)

YROFF (a)∼ N(μOFF / (N − 1) , σ2
OFF /(N − 1)2). (4.9b)

Considering the 3σ-variation of eNVMs and assuming no existing state
overlap, the relationship between the distribution of total on-/off-resistance
can be written as

μON + 3 · σON 
 μOFF − 3 · σOFF. (4.10)
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For a successful computation, the total resistance for on-/off-current in the
single-ended structure must fulfil the relationship as expressed following:

μON + 3 · σON 
 μOFF / (N − 1)− 3 · σOFF / (N − 1) . (4.11)

It is obvious that the condition of Equation (4.11) will be met if Equa-
tions (4.4) and (4.10) can be simultaneously fulfilled. In terms of the
process variation, the pseudo-differential structure faces a more serious sit-
uation. Deriving a concrete analytical solution for the distribution of total
on-/off-resistance in pseudo-differential structures requires lots of efforts,
however, still their rough relationship can be checked by making following
assumptions:

σON/μON = σOFF /μOFF (4.12)

b = ROFF /RON = OFF /μON . (4.13)

Then, the distributions of total on-/off-resistance can be written as

YRON(b)∼N

(
b · μON

b · (N/2 + 1) + (N/2− 1)
,

(
b · σON

b · (N/2 + 1) + (N/2− 1)

)2
)
,

(4.14)

YROFF (b)∼N

(
b · μON

b · (N/2− 1) + (N/2 + 1)
,

(
b · σON

b · (N/2− 1) + (N/2 + 1)

)2
)
.

(4.15)
A similar condition likes Equation(1.11) for the pseudo-differential structure
can be written as(

b · μON

b · (N/2− 1) + (N/2 + 1)
− b · μON

b · (N/2 + 1) + (N/2− 1)

)

� 3 ·
(

b · σON

b · (N/2 + 1) + (N/2− 1)
+

b · σON

b · (N/2− 1) + (N/2 + 1)

)
.

(4.16)
By simplifying Equation (4.16), the condition for the pseudo-differential
structure can be finally expressed as

σON 
 2 · (b− 1)

3 ·N · (b+ 1)
· μON . (4.17)

Equation (4.17) indicates that increasing the input channels requires reducing
the device process variation to keep computation precision unchanged even
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if the ROFF/RON is sufficiently large. For easy comparison, Equation (4.10)
can be re-written using same assumptions as

σON 
 (b−N + 1)

3 · (b+N − 1)
· μON . (4.18)

Note that conclusions made from Equations (4.17) and (4.18) are based
on some very optimistic assumptions like Equations (4.12) and (4.13) that
may vary from the reality. To verify those conclusions, a numerical analysis
for the total on-/off-current in both structures is made, and the result is
shown in Figure 4.3. This result identifies the above mathematical deriva-
tion that increasing ROFF/RON yields a better computation precision in
single-ended structures even if the process variation is significant. For the
pseudo-differential structure, ensuring that the device has less variation is the
precondition for a good computation precision instead of seeking for a large
ROFF/RON. The requirements given by single-ended and pseudo-differential
structures on eNVMs are listed in Table 4.1.

FeFETs have a very high ROFF/RON-ratio because their switching prop-
erty is as the same as conventional transistors, but also suffer from the
significant process variation due to the current technology maturity. Accord-
ing to those properties, the single-ended structure is a better fit for the design
with FeFETs. However, simply using FeFETs in a single-ended structure can
still deteriorate computation precision since the state overlap exists, as shown

Figure 4.3 The numerical analysis indicates that the ROFF/RON plays a dominant role for
the computation precision in the single-ended structure, where the inherent device process
variation is more important for the pseudo-differential structure.
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Table 4.1 Comparison between single-ended and pseudo-differential structures

Requirements Single-Ended Pseudo-Differential

ROFF/RON � (N − 1) � 1

Process variation σON � (b−N+1)
3·(b+N−1)

· μON σON � 2·(b−1)
3·N·(b+1)

· μON.

Area Small Large

FeFET suitable Not suitable

in Figure 4.1 (c). In order to prevent computational precision loss, a proper
synapse design should be derived.

4.3 Synapse Design

A good synapse design should have a large ROFF/RON-ratio and a sufficient
operating window without a huge area overhead. This chapter reviews the
existing circuit techniques, which could be applied to the synapse design,
proposes a gate-cascade technique for improving the synapse’s operating
window, and shows achieving a better trade-off by combining various circuit
techniques.

4.3.1 Conventional Design

Figure 4.4 (a) shows the simplest FeFET synapse that consists of a single
FeFET MF1 and an access transistor Ma. Its characteristic is the same as
conventional transistors’ but with an adjustable threshold voltage. However,

Figure 4.4 Two conventional FeFET synapses are shown, where synapse (b) has an addi-
tional current-limiting resistor in the series connection compared to the stand-alone FeFET
synapse (a). Both synapses can be activated by connecting a certain gate-voltage using access
transistors Ma and Mb, respectively. (c) shows the characteristics of synapses (a) and (b),
where a large series resistor enlarges the threshold voltage range of individual states by
scarifying the number of available states.
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a slight operating-points shift, or the process variation can result in noticeable
current changes for different states, as demonstrated by the case (a) in
Figure 4 (c). Adding a resistor in series with the FeFET, as demonstrated
in Figure 4.4 (b), results in a well-defined on-current, which can be estimated
using the linearized transistor equation in the triode-region as following:

IF2 =

(
∂IDS

∂VDS
+

1

R

)
(VOUT2 − VIN ) (4.20a)

so that
IF2 = (Kn(VGS − VTH − VDS + 1/R))VDS , (4.20b)

where Kn and VTH are transistors’ transconductance parameter, and thresh-
old voltage. VGS, VDS are VGATE and (VOUT2 – VIN) in Figure 4(b),
respectively. Considering conditions of:

Kn (VGS − VTH − VDS) > 0 (4.21a)

Kn (VGS − VTH − VDS) 
 1/R, (4.21b)

The on-current of synapse (b) is well-defined as

IF2 ≈ VOUT2 − VIN

R
. (4.22)

Additionally, the synapse (b)’s characteristic in the saturation region remains
the same as conventional transistors. However, FeFET enters earlier into
the triode-region depending on the resistor’s value because the drain-source
voltage is reduced by voltage drop over the resistor, as revealed by the case
(b) in Figure 4.4(c).

Compared to the synapse (a), synapse (b) has a higher robustness against
the operating-point shifts since it defines the on-current better. After reducing
four states of the case (a) to the case (b) with only two states, the impact of the
process variation on the on-current is reduced, where the threshold voltage’s
variation between state 11 and 10 (01 and 00) always results in a well-defined
on(off)-current if VGS is selected between transfer curves of state 10 and
01, as illustrated in Figure 4.4(c). Nevertheless, if the process variation is as
significant as shown in Figure 4.1(c), the state overlap cannot be eliminated
using synapse (a) and (b) with a single FeFET. A conventional way to yield
more stable devices against process variation is connecting multiple FeFETs
in series to form a relatively larger FeFET, where a large area overhead may
be caused by a large amount of FeFETs in series needed.
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4.3.2 Gate-Cascaded FeFETs

Inspired by analysis for single-ended and pseudo-differential structures, the
thought was made for enlarging the FeFET’s operating window faster than
devices variation. Figure 4.5(a) shows a possible implementation, the gate
cascaded FeFET. A tiny leakage current I1 flows through M1 when gate
voltage VG increases. It enables that the voltage VX rises with VG, and
correspondingly, FeFET M2 is turned-on by rising VX. Due to the diode-
connection of M1 and a very tiny drain-source current I1, M1 conducts in the
sub-threshold region, and I1 can be expressed as

I1 = Isexp(2− VTH1

nUT
)exp(

VGS1

nUT
), (4.23)

where n and IS are the process-dependent sub-threshold factor and specific
current, respectively. UT represents the thermal voltage, VGS1 and VTH1

denote the gate-source voltage and threshold voltage of M1. By solving
Equation (4.23), VGS1 can be written as

VGS1 = VTH1 + ln

(
I1
Is

)
nUT − 2nUT = VTH1 + VC , (4.24)

where VCrepresents the sum of the second and third terms of Equation (4.24).
Because only I1 changes very slightly and any other parameters are process-
specific, VC is approximately constant. Therefore, VGS2-VTH2 can be written
as

VGS2 − VTH2 = VG − VC − 2VTH0 −�VTH1 −�VTH2, (4.25)

Figure 4.5 The proposed gate-cascaded FeFET synapse, where a diode-connecting FeFET
is connected to the gate of another FeFET, is shown in (a). Its statistical distribution is shown in
(b), that the distance between threshold voltages doubles and the variation of the state overlap.
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where VTH0 is the threshold voltage of conventional transistors, ΔVTH1

and ΔVTH2 represent the threshold voltage changes applied to conventional
transistors by the ferroelectric layer. If both FeFETs are simultaneously
programmed to the same state (ΔVTH1 = ΔVTH2), the operating window
VΔ, which is defined as voltage difference Δ(VGS2 - VTH2) between high-
and low threshold voltage state (HVT and LVT), can be written as

V� = � (VGS2 − VTH2) = 2(�VTH,HV T −�VTH,LV T ), (4.26)

where is twice as conventional synapses.
Considering that the ΔVTH-variation has approximately a normal dis-

tribution, the distribution of ΔVTH1 and ΔVTH2 are referred to X and Y,
where

X∼N
(
μ�TH1, σ

2
�TH1

)
(4.27a)

Y∼N
(
μ�TH2, σ

2
�TH2

)
. (4.27b)

Two FeFETs in a circuit should have identical distributions, and they are
independent of each other, which means that they are jointly normal. The
distribution U of (ΔVTH1 +ΔVTH2) with (ΔVTH1 =ΔVTH2) can be written
as

U = X + Y (4.28a)

U∼N
(
2μ�TH , 2σ2

�TH

)
(4.28b)

with
μTH = μTH1 = μTH2 (4.29a)

σTH = σTH1 = σTH2. (4.29b)

Assuming a 3σ-variation, the operating window for the conventional synapse
VΔconv and the gate-cascaded FeFET VΔprop can be derived as

V�conv = (μHV T − μLV T )− 6(σHV T − σHV T ) (4.30a)

V�prop = (μHV T − μLV T )− 3
√
2(σHV T − σHV T ). (4.30b)

If no overlap between two states is expected, the operating window
must be positive (VΔ>0). The conventional synapse (CONV.) and the gate-
cascaded synapses (PROP.) operate correctly if the following conditions are
fulfilled.

CONV. : (μHV T − μLV T ) > 6(σHV T − σHV T ) (4.31a)
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PROP. : (μHV T − μLV T ) > 3
√
2(σHV T − σHV T ) (4.31b)

According to Equations (4.31a) and (4.31b), synapses with gate-cascaded
FeFETs has a 1.4 times relaxed requirement for the process variation com-
pared to the conventional synapses, which is shown in Figure 4.5(b). Extend-
ing a single gate-cascaded synapse to N-stage gate-cascaded synapses (N>0),
as shown in Figure 4.6(a) and (b), the improvement A can be written as:

A = (N + 1)/
√
N + 1. (4.32)

The derivative of the improvement can be written as

A′ =
1√

(4N + 4)
, (4.33)

which indicates that the improvement of the operating window slows down
with a continuously increasing number of gate-cascaded stages.

4.3.3 Exploration Results

Figure 4.6 (c) shows the drain-source current curve of FeFETs without gate-
cascade, with one- and two-stage gate-cascade. By increasing the number
of gate-cascaded stages, the operating window, and the voltage difference
between states are enhanced with the same gate voltage VG. Figure 4.6(d)
compares the conventional synapses with 3 FeFETs in series and with 3-
stage gate-cascaded FeFETs. The conventional design has a slightly improved
operating window compared to a single FeFET that has no operating window
at all. The design with gate-cascaded FeFETs has an operating window up
to 12.1 times larger than the operating window with 3 FeFETs in series. The
ION/IOFF-ratio, which is exactly equal to ROFF/RON-ratio, and the operating
window are enhanced approximately 2.67 times and 12.1 times compared to
the conventional design, respectively.

Table 4.2 Relative Performance Comparison
3-Stage Gate-

Single FeFET 3 FeFETs in series Cascaded FeFET
# of FeFETs 1 3 3
ION/IOFF N/A α 2.67 α
ION/IOFF with
process variation

N/A β 26900 β

Operating Window <0 γ 12.1 γ
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Figure 4.6 (a) and (b) show a two-stage and a N-stage gate-cascaded FeFET synapse,
respectively. (c) shows the change of their characteristics, where the voltage difference
between states is enlarged. (d) demonstrate the characteristic of a conventional synapse with
three serially connected FeFET and a three-stage gate cascaded FeFET. The gate-cascaded
FeFET achieved 12.1 times larger operating window than conventional design.

Nevertheless, the drawbacks that the gate-cascaded FeFET brings need to
be pointed out:

1. Programming FeFETs requires a particularly high voltage applied to
FeFETs. The more gate-cascaded stages are used, the more access high-
voltage transistors are required, which occupy the most area in the
design as the design example shown in Figure 4.7(a) and (b).

2. Shifting threshold voltage to a very high value does not yield much. On
the one hand, the improvement slows down with an increasing number
of cascaded stages, according to Equation (4.33). On the other hand,
the real gate voltage cannot achieve a very high potential. An optimal
number of stages is highly technology dependent.

Since drawbacks listed above, combing different methods in a right manner
will result into an optimal design point. A design example is shown in
Figure 4.7(a), where

• M3,Land M3,R play the role of resistors to limit the current,
• M1 and M2 are serially connected FeFETs for reducing the process
variation slightly,
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Figure 4.7 design example, which combine the proposed and conventional techniques, is
shown in (a). (b) displays the layout of this design example. (c) indicates that a up to 200mV
operating window is achieved using 1-stage gate-cascade.

• M1, M2 and M3 build a one-stage gate cascade for generally enhancing
operating window.

The performance of the design example is shown in Figure 4.7(c). Depend-
ing on the need, the operating window can further be enhanced by either
connecting more FeFETs in series or applying more gate-cascaded stages.

4.4 Conclusion

This article mainly reviews circuit aspects, such as select of the best readout
structure and the design of resistive synapses, for using FeFETs in a crossbar-
based analogue MAC accelerating unit. Both analytical and numerical
analyses indicate that FeFETs have a better fit to the single-ended structure,
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which requires a high ROFF/RON-ratio but has relaxing requirements for
the process variation. Those considerations can be transferred to other types
of eNVMs. Furthermore, this article compares three ways of using FeFETs
as resistive synapses, and the result indicates that only combining different
methods can lead into a high ROFF/RON-ratio and non-overlapped states
without a significant area overhead. For implementing an entire accelerator,
other design aspects, such as programming algorithms, parasitic effects,
design of efficient data-converter and so on, need to be considered. However,
this article gives readers an essential guidance how to start using FeFETs or
other eNVMs, for crossbar-based analogue MAC accelerators.
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Abstract

Recently, deep neural networks (DNNs) have proved their success in perform-
ing various tasks at high accuracy. However, these networks come at a high
cost of computational and memory requirements and with the continuously
growing neural networks sizes, conventional von Neumann accelerators hit
the memory wall. Processing-in-memory (PIM) acceleration is heavily inves-
tigated to deliver the aforementioned requirements with a great potential to
further accelerate these application and meet the possible future needs. In this
chapter, we explore the state-of-the-art, challenges and future possibilities of
the PIM based DNN accelerators. First, we explore various volatile and non-
volatile memory cells that are commonly used for PIM architectures. Second,
we discuss the possible approaches to design a PIM accelerator (digital, ana-
log, mixed-signal processing). Third, we investigate the operational accuracy
these architectures are offering, the requirements these architectures enforce
when it comes to the inferred network quantization. Finally, we conduct an
extensive comparison between these architectures.
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5.1 Memory Technologies

5.1.1 Volatile Memories

For many years, the main memory cells to provide storage space for any
computational process were volatile memories. Volatile Memory is called the
memory which retains the data only as long as there is power supplied. The
most common volatile memories are the dynamic random access memory
(DRAM) and the static random-access memory (SRAM).

An SRAM cell is constructed from two transistors and four more transis-
tor forming two cross-coupled inverters storing one single bit (Figure 5.1).
The SRAM cell is preferred among the volatile memories due to its low
access time and high performance comparing with the DRAM of which the
threshold voltage of the access transistor is very high [1]. However, SRAM is
considered as en expensive memory and dominates a high amount of area
in a digital chip and also the total chip leakage current [2]. Although, in
advanced technologies, the decreased VDD can lower the leakage current, the
storage capacitance of a bitcell SRAM is reduced and soft error rate (SER)
is introduced [3]. Moreover, with respect to the NVM, it lacks of high power
efficiency and exposes higher read delay, for higher temperature [4]. SRAM
cell is often used as the main memory cell where the MAC operations are
performed [5][6].

At the moment, DRAM is the most popular type of memory when design-
ing an AI accelerator and needing memory storage. Its simple design consists
of a transistor and a storage capacitance (Figure 5.1). The need for very large
and dense quantities of memory, led to the usage of DRAM to be the main off-
chip memory [7]. The cost of the DRAM cell is less than the SRAM, but the
DRAM memory needs a circuit to periodically refresh the memory since the
capacitance needs to be discharge also, DRAM’s capacitance leaks current
and the data has to be transferred at the main chip, so higher latency and

Figure 5.1 Conventional volatile memory cells a) 6T SRAM cell and b) DRAM cell.
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power needed [7]. Recent studies has designed new techniques to compensate
those effects like the time minimization of the DRAM access [8] or the
latency in sense of energy per access [9]. Nevertheless, the biggest concern of
the DRAMmemory seems to be the scaling limit with the newer technologies
and the smaller sizes of the transistor [10].

5.1.2 Non Volatile Memories

The aforementioned disadvantages of the volatile memories lead the
researchers to investigate another type of memories, the non volatile
memories (NVM). These memories have the ability to retain the data even
if the power supply is disconnected. They present high power efficiency with
respect to the volatile memories and low latency since the network’s opera-
tions happen inside the memory. Although the low cost and high density, they
may present some reliability issues like data retention and finite endurance,
resulting in high bit-error-rates (BER) in the stored weights [11]. Recent
studies have showed some solutions for the BER problem like error correction
code (ECC) [12][13], but these techniques demand high power during the
read operation which can not be compatible with the new edge technologies.
Some of the most popular NVM are the flash memory, the resistive random-
access memory (ReRAM or RRAM) and the ferroelectric RAM (FeRAM,
F-RAM or FRAM).

A Flash memory cell is simply a MOSFET cell, except that a polysilicon
floating gate (or a silicon nitride charge trap layer) is sandwiched between a
tunnel oxide and an interpolyoxide to form a charge storage layer [10]. The
floating gate is used to store the data and it provides programming and erasing
process. However, the Flash memory lacks of scalability since a conventional
Flash type of memory needs a tunnel oxide layer thickness of 8nm to avoid
charge loss and maintain the data (data retention) for 10 years [14]. As a
result, a reduction of device dimension could cause threshold voltage shift,
retention, endurance and dielectric leakage [10][15].

The ReRAM cell consists of one Memristor and one transistor. Memristor
is a device which acts as a programmable resistance, so the voltage level of
the transistor can be determined. This voltage level represents the state/value
of the weights in a neural network. However, concerning to the power
consumption, the ReRAM presents gate leakage and relatively high power
consumption for low latency and vise versa [4]. Moreover, a significant effect
which should be taken into consideration when designing a NN accelerator
with ReRAM, is that for any small variation of the Vth, the write delay is
increased exponentially [4].
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In order to avoid the ReRAMs high write power and long read latency (RC
delay), studies focused on FeRAM as one popular upcoming technologies for
NVM [16]. It is firstly introduced in [17] where ferroelectricity in silicon
doped hafnium oxide (Si : HFO2) is presented as a high scalable and
complementary metal-oxide semiconductor (CMOS) compatible technology
(ferroelectric field-effect transistor - FeFET). It consists of a transistor and a
capacitor structure which gives the transistor the ability to be programmed
and erased in different levels with respect to its Vth It has already been
integrated into various CMOS new edge technologies [18][19] and it presents
low device-to-device variation. One disadvantage of the FeFET is that during
the read operation, a leakage current can be detected which is involved to a
small writing pulse to each cell [10]. It is a fast memory (higher read speed
than Flash and SRAM memory) with high endurance and low hold power
making FeFET a competitive technology of NVM.

5.2 In-memory Architecture

In this section, we review the different design trends in the field of in-memory
computing architectures based on different memory technologies and tar-
geting various neural networks. The different architectures are explored
according to their computational domain, flexibility and programmability,
used technology, target networks and their representation and finally the
reliability and accuracy of the computations.

5.2.1 Computational Domain

As In-memory architectures main idea is to perform the target operation
in memory by leveraging the memory cell properties in the analog domain
or in more digital approach. However, pure analog domain usually targets
neuromorphic computations which is not the main scope of this survey. In
this section, we will be exploring two main trends in In-memory architecture;
the mixed signal based architectures and digital based architectures. For each,
we will investigate the possible advantages and disadvantages each is offering
as well as the potential each hold for future applications.

5.2.1.1 Mixed signal approach
In this approach, the main computation is realized by using the analog
properties of the memory cell within the memory crossbar or sub-array. As
shown in Figure 5.2, the min idea here depends on storing the weight value
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Figure 5.2 General concept of mixed-signal in-memory crossbar (A) The digital activation
of the computed layer. (B) DACs convert the digital input into an analog signal to be applied to
the memory cell. (C) Memory cell storing the kernel value of the currently computed layer. (D)
The summation line which accumulates the result signal out of the memory cell representing
the operation results. (E) ADCs convert back the result into the digital domain for any further
processing.

within memory cell and using a digital to analog converter (DAC) to represent
the input feature value as an applied voltage. The result of such multiplication
operation between the input and weight values are represented by the output
signal of the memory cell as explained previously. Based on kirchhoff law,
the result of different multiplications along the BL is accumulated and finally
forwarded to the analog to digital converter (ADC) unit that yields the final
result of the performed MAC operations.

Several architectures [20][21] adopt this crossbar organization as their
main processing element. This structure became a very popular crossbar
structure because of its very high throughput as well as matching the domi-
nant MAC operation. However, this approach holds couple of drawbacks as
it requires a number of ADCs and DACs which reflects on the chip area and
the power consumption of the overall processing element. These components



158 Emerging In-memory Computing for Neural Networks

Figure 5.3 Eliminated the DACs and instead serialize the activation by applying only a
single bit at each cycle [24].

can amount up to 23% and 61% of the system area and power respectively
as shown in [22] or in extreme cases up to 99% and 85% as in [23]. To
limit these drawbacks, several architectures [24][25] eliminated the DACs
and instead serialize the activation by applying only a single bit at each cycle
as shown in Figure 5.4. This approach also reduce the ADCs size as the
accumulated analog value is also smaller. However, this approach requires
more cycles to perform single operation (usually number of cycles equivalent
to the activation precision.),

Another approach to limit such drawback was to adapt a bit decom-
position approach by either decomposing the activation as the previously
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Figure 5.4 (a) Several row activation approach such as Ambit’s TRA [28]. (b) Changing
subarray unit cell structure whether with extra transistors or operation mode as in DRISA
3T1C [29]. (c) Activating only one row at a time and use the row activation as an operand as
in FlexPim [28].

mentioned approach or by decomposing the weight stored as well [26][27].
In this approach, a compromise between the number of cycles needed and the
size of ADCs and DACs is investigated to balance the throughput, area and
power of the architecture.

5.2.1.2 Digital approach
Another way for in-memory computation is adapting a completely digital
approach. Such structure depends on either decomposing both the weights
and activations completely or quantizing the parameters to binarized repre-
sentation. This in return converts the MAC operation into bulk logical bitwise
operations that need to be followed by additions, shiftings and comparisons.
The memory cells are usually used to perform the bitwise operations and
the rest of operations are done by supporting computational blocks. Several
architectures realize the bulk operations as shown in Figure 5.4 through
parallel sub-array activations representing the operands [28] or through single
row activation based on one of the operands [29][30]. Another realization is
possible through modifying the cell to perform the target logical operation as
in [31][32].
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Figure 5.5 The relation between the energy cost for digital and analog MAC operations
versus bit precision. [33].

Compared to the mixed signal approach, this approach allows for high
speed due to the eliminations of the analog blocks as well as high power
efficiency. However, the decomposition of the MAC operations reflects on
the operation latency. Also, low bit quantization limits the architecture usage
to neural networks models that can tolerate such quantization.

5.2.2 Target Network Quantization

In this section, we investigate the possible targeted neural network weights’
quantization and representation. Ranging from floating point representation
to binary representation, wide range of presented architectures has been
offered with each targeting a specific representation or in some cases try to
be flexible and target several possible weights’ quantization. As highlighted
in earlier sections and shown in Figure 5.5, such network properties affect
directly the architecture choices such as the computational domain, selected
technology, etc but also it is reflected on the network accuracy and possibility
of using the architecture for training as well as inference.

5.2.2.1 Floating point architectures
Floating point representation is considered as the most accurate form of the
targeted network since it is usually the representation used during the training
and design phase. Architectures targeting such representation are usually
used for training mainly [34][35]. The main advantage such architectures
are offering is the elimination of accuracy loss from network representation.
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Also, these architectures targets the largest range of networks as the only
limitation in that case is the support of network layers type or not.

However, these architectures are usually suffer from a trade off between
high power consumption or lower throughput. Depending on the design
choices, generally expensive power blocks are used which maintain high
throughput on the expense of high power consumption. This makes them
way efficient when compared to general purposed computing devices such as
graphic processing units (GPUs) but losing the edge compared to low power
ASIC designs.

5.2.2.2 Fixed-point architectures
Architectures targeting fixed-point weight representation are the most popular
among in-memory architectures. Due to advanced neural network opti-
mization techniques [36][22], weights can be represented using fixed-point
precision as low as 4-bit in large complex networks. With such low rep-
resentation, these architectures store the weight in the memory cell which
boost the system throughput and performance as shown previously. However,
such architectures suffer from several drawbacks related to accuracy losses
that can occur due to sever compression. Also, such representation limit the
usage of these architectures in training related tasks and confine them more
to inference based tasks.

5.2.2.3 Binarized architectures
Motivated by the extremely reduced memory/computational requirements
with marginal degradation in accuracy for some networks [37][38], several
architectures are built to target binary/ternary operations. In these architec-
tures [39][5], the main operation performed by the memory cell is usually
very simple logical operation. Also, these architectures reduce the memory
cell irregularities to the minimum as each cell stores a single bit.

However, the binarization limits the architecture usage to a limited num-
ber of networks that can currently adopt such representation. The main
argument these architecture is dependant on is the consistent advance in the
binarization techniques that can allow for more networks to be using such
architecture.

5.2.2.4 Flexible precision architectures
A recent popular growing trend is to target various representations simultane-
ously where these representations can range from binarized to full precision
floating point as in [26][30]. In these architectures, the weights and inputs
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precision can be traded for either higher throughput or reduced power
consumption.

Most of these architectures depend on weight bit decomposition or input
serialization explained earlier. Such flexibility allows for the use of these
architectures for a wider range of networks and for both inference and training
purposes. However, such flexibility comes with a cost compared to fixed
representation architectures. For example in [29], to achieve such flexibility,
a hierarchical network on chip is required which adds extra hardware either
to the chip busses or the complexity of the chip control.
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Abstract

In the digital transformation era, when flexibility and know-how in manufac-
turing complex products become a critical competitive advantage, artificial
intelligence (AI) is one of the technologies driving the digital transformation
of industry and industrial products. These products with high complexity
based on multi-dimensional requirements need flexible and adaptive manu-
facturing lines and novel components, e.g., dedicated CPUs, GPUs, FPGAs,
TPUs and neuromorphic architectures that support AI operations at the edge
with reliable sensors and specialised AI capabilities.

The change towards AI-driven applications in industrial sectors enables
new innovative industrial and manufacturing models. New process manage-
ment approaches appear and become part of the core competence in the
organizations and the network of manufacturing sites.

In this context, bringing AI from the cloud to the edge and promoting
the silicon-born AI components by advancing Moore’s law and acceler-
ating edge processing adoption in different industries through reference
implementations becomes a priority for digitising industry.

This article gives an overview of the ECSEL JU AI4DI project that
aims to apply at the edge AI-based technologies, methods, algorithms, and
integration with Industrial Internet of Things (IIoT) and robotics to enhance
industrial processes based on repetitive tasks, focusing on replacing process
identification and validation methods with intelligent technologies across
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automotive, semiconductor, machinery, food and beverage, and transportation
industries.

Keywords: Artificial intelligence, edge computing, industrial internet of
things, deep learning, hardware, silicon technologies, silicon-born AI, com-
puter vision

6.1 AI at the Edge in Industrial Processes

With more increased computing power, intelligent sensors and IIoT devices
can collect large volumes of data these devices generate, reason over that
data, and turn it into knowledge. AI can process this data closer to where it
is produced and getting distributed to the edge. Multi-parameter sensing IIoT
devices, AI everywhere, and serverless computing drive this new intelligent
edge era.

Defining “intelligence” in the AI context requires a careful approach since
different choices lead the research in different directions. The current field of
AI is a mixture of multiple research fields, each with its own goal, methods,
practical applications, etc. They are all called “AI” mainly for historical rather
than theoretical reasons. Many AI definitions are provided in the literature
(published papers, articles, books, research studies) to reflect the activities of
research fields that the definitions mirror [2][3]. However, the definitions of
AI systems are too vague and broad, requires further clarification.

As a starting point, AI in the context of the AI4DI project was defined
as a machine’s ability to collect information, perform logical analysis,
acquire/produce knowledge, and adjust to an environment that varies over
time or in a given context [1][5]. These abilities include the collective
attributes of a machine (e.g., computer, robot, intelligent IIoT device, etc.)
capable of performing functions such as learning, decision making, or other
intelligent functions and tasks that mimic human behaviours [5].

The manufacturing industry is in transition, driven by Industry 5.0
concepts that transform the entire manufacturing value chain through a
technology-driven change in capabilities and expectations. It is not simply
about substituting people with machines, but instead about how people, inter-
connected sensors, machines, IIoT devices, distributed ledger technologies
(DLTs), digital platforms, and AI can work together more effectively, using
fewer resources and minimising the carbon dioxide footprint. Technologi-
cal advancement drives manufacturers to increase productivity, efficiency,
growth, deliver quality products, satisfy customers, and achieve higher



6.1 AI at the Edge in Industrial Processes 169

profitability and sustainability. The Industry 5.0 AI-based driven processes
change the tasks execution and impact manufacturing at the individual oper-
ation level. These digital-driven capabilities advance manufacturing across
industries, value chains and value networks. That means that to remain
competitive, manufacturers must adopt new AI technologies and integrate
them into the manufacturing processes.

AI becomes a critical element to advanced manufacturing, product life
cycle management and enterprise asset management.

Despite its potential, AI has several drawbacks that prevent the full
exploitation of AI-based technologies. A few of these drawbacks are listed
below:

• Insufficient reliability and robustness of AI systems - despite the
numerous relevant technological advances, AI systems are still associ-
ated with low reliability, reflected in their relatively low penetration and
utilisation.

• High complexity - the complexity of AI tasks has increased steadily to
address new paradigms for automating, conceptualising, designing, and
implementing such AI-based systems that include sensors, hardware,
software, models, and algorithms.

• High costs - The development, implementation and deployment of
AI-based solutions require vast investments as AI-based systems are
unusually complex. Their repair and maintenance require significant
effort. The AI systems call for frequent upgrades to meet to the changing
environment’s needs and make machines more “intelligent” day by
day. In severe breakdowns, the procedure to recover lost codes and
re-instating the AI-based system might require enormous time and cost.

• Energy consumption - AI models consume a relatively extensive
amount of energy, and these energy requirements are increasing as
AI technology is deployed in different industrial applications. Using
deep learning (DL) algorithms, the computational resources needed to
produce performant AI models increase significantly every year. In this
context, AI has a significant carbon footprint, and if industry trends
proceed, it will soon become considerably more severe.

• Training data shortage - AI-based models require large amounts of
data, and their performance relies heavily on the size of training data
sets available. For most industrial sectors, it is not easy to create
training datasets that are large enough and include information that
allow different industrial stakeholders to use the same data sets for
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benchmarking similar AI models. These data sets exhibit tremendous
potential for optimising industrial processes in cases where traditional
approaches, like stochastics, analytical or numerical models, can no
longer be used.

• Absence of improvement with experience - technical drawbacks
related to the lack of progress with experience of the AI systems is
a challenge. AI-based systems store a large amount of data. The data
can be accessed and used differently by human and machine intelli-
gence. Machines today can still not alter their responses to changing
environments without being re-trained or updated/upgraded.

• Lack of original creativity - while AI systems can help humans create,
they do not match yet the power of thinking that the human brain has or
the originality of a creative mind.

The AI4DI project addresses several drawbacks mentioned above and pro-
vides solutions that enable AI to optimise industrial processes, energy
efficiency, and processing at the edge.

6.2 A pan-European AI Framework for Manufacturing
and Process Technology

The purpose of AI4DI is to benefit from recent research in the fields of
semiconductor, intelligent systems, process control, IIoT, connectivity and
edge computing to extend the potential of state-of-the-art AI technology for
industrial applications to address the current main challenges in the industry:

• Flexibility: Factories and processes need to adapt to dynamic demand
and compensate for failures quickly. AI can support and automate pro-
cesses, planning, decisions, and system optimisation during all design
phases.

• Complexity: Design processes, supply chains, manufacturing sites and
the final products become increasingly complex. Managing this com-
plexity can no longer be handled by humans. AI can reduce this
complexity by generating simplified representations and even automat-
ing control. Importantly, this also includes the complexity of the AI
system itself, which means that humans must interpret and understand
its decisions and actions.

• Process locally and think holistic: Strong requirements for low latency,
high reliability, and data privacy in industrial applications preclude
outsourcing AI to existing cloud services. To successfully adopt AI in
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the industry, AI must be deployed at the edge to support distributed
on-site data processing with state-of-the-art AI components, algorithms,
techniques, and methods.

• Transparency: The advance of digitisation will yield massive amounts
of heterogeneous and possible unstructured data from many different
sources. AI-based analysis and synthesis methods will be mandatory
to analyse these large data sets and make them transparent for human
operators and decision-makers.

Current AI tools are optimised for cloud services and therefore do not
always fulfil the robust requirements of production environments (real-time
capability, safety, reliability, guaranteed service quality, etc.). The AI4DI
demonstrators provide and adopt AI methods and tools suited for moving
the intelligence and analytics at the edge by addressing the following areas:

• Hardware: Develop AI-based microcontrollers, embedded systems and
IIoT devices designed for industrial environments and edge process-
ing. AI systems in the industry are implemented using a decentralised
architecture with AI components distributed over a heterogeneous set of
devices aligned with the software infrastructure.

• Software and Libraries: Adapt the existing software and libraries and
develop new ones to address the critical requirements for AI in the
industry regarding safety and reliability. As these requirements are not
reflected in current AI tools, the project partners are extending the
features of the existing tools, including appropriate workflows for testing
and validation.

• Algorithms: Existing AI algorithms, in most cases, run on high-
performance hardware. The AI4DI is advancing the optimisation of
AI algorithms and models at the edge for running on IIoT devices
and embedded systems with limited resources in terms of processing
power, connectivity, and energy sources. The new optimisation methods
and techniques for reducing the computational requirements are applied
to neural networks (e.g., reducing the number of layers, adaptation
to less precision) and quantify the impact of these optimisations on
performance. New AI methods are investigated to improve the real-time
operation capabilities and online learning.

• Data: Data and its quality play a critical role in AI industrial appli-
cations both for learning/training and testing the AI-based models and
algorithms. In many manufacturing facilities, data is extremely sensitive
and expensive to collect. Consequently, there is a strong need for an
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explanation that can describe the needed information for various AI
methods and techniques. Automated data anonymisation methods are
required to allow data sharing for training without exposing confidential
information.

AI4DI’s mission is bringing AI from the cloud to the edge and making Europe
a leader in silicon-born AI by advancing Moore’s law and accelerating edge
processing adoption in different industries through reference demonstrators
[1]. The project focuses on five objectives to achieve its mission, as illustrated
in Figure 6.1 and listed below.

1. Develop AI applications to be demonstrated under conditions as close as
possible to real-life.

2. Formulate roadmaps, exploitation studies, business cases for AI tech-
nologies applications in industrial environments.

3. Provide a deployment plan showing how to develop and valorise AI
technology in industrial sectors.

4. Establish an AI community in Europe, which is complementary to other
initiatives.

5. Build and sustain dynamic AI technology ecosystems in Europe, ensur-
ing ethical, responsible, and trusted AI for safety-critical real-time
applications.

Figure 6.1 AI4DI Objectives.
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Figure 6.2 AI4DI Key Targets.

The AI4DI reproducible approach for implementing AI methods in the
industrial sectors includes a structure that comprises seven key targets (KTs),
as illustrated in Figure 6.2.

Each key target is a generic element representing a common characteristic
of different processes, collaborations, methods etc., that is necessary for the
successful cross-industry implementation of AI methods. A short description
of each key target is provided in the following paragraphs.

Heterogeneous control - addresses the development and implementation of
AI methods for heterogeneous control in manufacturing facilities. The main
feature of heterogeneous production is assembling differentiable products
from individual parts in a discrete manufacturing process with many different
sequential steps. The exact sequence may vary from product to product and
strongly depends on customer needs. Examples include the manufacturing of
vehicles, aircraft, computers, and furniture. Various production steps make
heterogeneous manufacturing highly complex and require human experts
to identify and trace back issues. In this context, AI methods can collect
knowledge, help to make transparent decisions based on current and saved
data, and enable the optimisation of single production steps on the global
level. One main task in the control of heterogeneous manufacturing processes
is the scheduling of materials and production facilities. Production planning
methods like material requirements planning rely heavily on correct data
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about the manufacturing facility, production history, predicted future required
demands etc. AI methods have recently proven a considerable capability
in generative modelling and can considerably contribute to more efficient
production planning by providing more reliable external and internal factors
models in the planning process.

AI can provide tools and methods for continuous quality monitoring
at every process step and using the collected data to optimise the global
control of the manufacturing process. Applications include automatic visual
inspection with neural networks, pattern detection in measurement data, and
proactive control based on predictive modelling. With distributed AI, devices
already operating in the field can provide feedback directly available to the
production process. A unique advantage of using AI to model and store
data about the production process is that knowledge can be directly shared
between the different plants. Introducing AI to control heterogeneous produc-
tion processes become a fundamental prerequisite for managing increasingly
complex products and growing product diversity (e.g., lot size one production
in Industry 5.0). AI methods can model processes based on ontologies and
knowledge databases. This information can be used to interpret data from the
plant in an abstract, condensed, and semantically meaningful way, proactively
recommending actions to the operator.

Homogeneous control - addresses the control of homogeneous production
processes that manufactures products by combining raw materials from
different supplies in a continuous and non-interruptible process. Typical
examples of produced goods include pharmaceuticals, plastics, liquids, wine,
and food. The various steps of homogeneous production processes are not
isolated and usually irreversible. Control is therefore highly time-critical
and directly related to the quality of the product. Very often, homogeneous
processes are part of a larger heterogeneous manufacturing environment.
The control of homogeneous production processes is based on continuous
control loops often implemented as proportional–integral–derivative (PID)
controllers. The parameters of these loops are directly related to the process
output and the quality of the end product. Setting these parameters cannot be
done locally only since changes at one stage of the system can affect all later
stages due to the continuous nature of the process.

Moreover, specific sets of parameters can increase the overall robustness
of the system at the global level even though local control loops might not be
operating at the optimum level. The identification and dynamic application of
these parameter sets require collecting and evaluating system data collected at
all stages of the manufacturing process. Analysing this data, correlating them
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to favourable production parameters, and dynamically generating appropriate
control parameters is a high-dimensional optimisation problem that is hard
to track with traditional methods. Machine learning-based AI methods have
achieved increased performance in control tasks but have not been applied
in process control yet. Adopting these methods in industrial environments is
highly promising and requires establishing standards to quantify important
aspects such as reliability and real-time capability.

In large manufacturing facilities, homogeneous processes are typically
observed in dedicated control rooms where experts have access to all sensors
and actors in the system. Operating the control level requires a high level of
expertise and concentration. Pre-processing and interpreting this data with
domain-aware AI methods enable adding semantic information to raw mea-
surements and identifying system states at an abstract level. Process control
equipment in these facilities has specific safety and real-time requirements,
and there is a strong need to move the required AI methods from the cloud to
the edge.

Human-Machine collaboration - includes how AI methods can empower
and enhance human-machine collaboration, including new ways of interac-
tion, ethics, and value standards. The human-machine interactions in indus-
trial environments can apply AI-based techniques locally at the edge close
to industrial machinery by using latency communication and distributing
intelligence between humans and machines on the industrial manufacturing
floor. The collaboration approach is comparable to how an ants colony works,
with each ant applying its separate intelligence towards the suitable solution
of a common task. Examples of human-machine collaboration include spa-
tiotemporal semantic awareness for enhanced worker safety, human-machine
natural interaction for better design-to-manufacturing information transfer,
correct instruction for acceptance of AI, and high-level understanding of
continuous logistics flow on-premises and global level. The spatiotemporal
semantic awareness for enhanced worker safety comprises cases, where
machines are capable of a sophisticated semantic understanding of the envi-
ronments and can move industrial robots to reduced risk towards the human
worker, with less compromise on overall productivity. AI-based edge per-
ception and activity recognition technologies applied at the level of the edge
and IoT devices can be used to automatically understand the spatiotemporal
relative position between workers and machines operating under his/her
supervision, thus identifying potentially dangerous situations with ultra-low
latency and much higher precision. The human-machine natural interaction
for better design-to-manufacturing information transfer consists of on the
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edge node speech recognition AI-based solutions. Natural language process-
ing provides a way to naturally interact with machines using voice-based
commands even in very noisy environments. More advanced and friendly
AI-based interfaces can improve human-machine collaboration on the manu-
facturing floor. Correct instruction for acceptance of AI includes advanced
human-machine interfaces enabled by AI to deal with human knowledge.
The correct instruction brings issues related to the ethical dimension, e.g.,
workers might be worried about the security and privacy aspects of interacting
with an “aware” machine. Correct and transparent instructions on how to
interact with AI-augmented devices encourage acceptance in the industry.
A high-level understanding of continuous logistics flow on-premises, and
global level relates to the capability to extract information at all manufac-
turing stages and understand complex logistic relationships to enhancing
manufacturing facility-level productivity. AI performed at the edge provides
a clear pathway in this direction, as too-abundant raw data can be locally
characterised, inferred upon using AI techniques (ML, DL), summarised
in a high information density format, and then immediately used to act
accordingly. For industrial environments characterised by complex integrated
value chains often spanning many geographically distant manufacturing facil-
ities and industrial plants, utilising data analytics collected directly at the
manufacturing level to smooth out logistics provides a significant productivity
improvement.

Change and anomaly detection - addresses all methods and tools required
to continuously monitor and analyse both heterogeneous and homogeneous
production processes, both in real-time at runtime and offline after data
collection. Tasks such as failure detection and quality control require in-
depth domain knowledge and are usually limited to covering a predefined
set of problem cases. Complex issues that depend on the specific produc-
tion environment or a particular load profile are hard to detect and cannot
be modelled in advance. More importantly, many changes in a production
environment are not limited to a single stage in the production process but
accumulate or spread over multiple phases. Detecting such changes becomes
increasingly hard in complex production processes and can no longer be done
by humans in dynamic reconfigurable factory environments of Industry 5.0.
AI and ML are key factors for managing this complexity, and topics such
as diagnostics and predictive maintenance, security and anomaly detection,
distributed ledger are addressed. Diagnostics and predictive maintenance
deals with the detection of failure or wear and tear on a single machine.
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Usually, this task is carried out during maintenance or by a skilled worker
operating the machine. Using time series analysis and prediction methods
enables continuous monitoring based on either internal data recorded by the
equipment or externally accessible state information that humans also use
(e.g., vibration, sound, temperature sensing, image, video). While change
detection can be computed on embedded devices directly at the machine,
the actual training of the required models will, in most cases, rely on data
analysis performed in the cloud. The results are transferred to edge devices
that perform inferencing. Security and anomaly detection relates to the detec-
tion of intrusion and malicious system behaviour. In the ongoing digitising
of production systems, more and more devices in the production process
communicate via the network. The network connectivity is essential for many
IIoT and AI-based tools and makes the system vulnerable to threats. Security
is a significant issue in production systems and an important application
for anomaly detection methods that detect deviations from a processing
equipment’s expected behaviour or output. For distributed systems used in
future Industry 5.0 production environments, anomaly detection at the whole
system level becomes particularly relevant since a single issue can propagate
throughout the entire network. Distributed ledger offers the possibility of
implementing a mechanism that guarantees the overall consistency of a
distributed production system. This is particularly important for small lot
sizes where the production process can differ considerably based on customer
requirements. Implementing a distributed ledger enable guaranteed traceabil-
ity of all process steps and is indispensable for safety- critical products. It
also can increase the system’s security since it allows for the direct detection
of illegal operations. All mechanisms for change detection contribute to the
awareness of the system and enable the detection of inconsistent, inefficient,
and unsafe states. The detection performance heavily depends on the data
available. Interfaces and exposed state data usually differ for every single
machine, which makes the integration highly challenging. AI-based methods
are a crucial contribution since they enable the processing of natural input
data from IIoT devices that human experts also use to detect failure, wear out
and other anomalies.

Distributed system intelligence - addresses the infrastructure on which the
AI methods are implemented. Its focus is distributed intelligence systems,
consisting of several subsystems taking each decision, with no need for
central intelligence. As such, it constitutes one of the fundamental infras-
tructural blocks necessary for deploying the other key targets. The principal
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driver for the deployment of AI in complex industrial settings is collect-
ing information, analysing it, and reacting immediately. Various pieces of
machinery operate in concert towards the manufacturing of a single object
or device, making it unfeasible to centralise intelligence in a unique central
driver, as in the classical cloud-based AI model. Instead, like in an ant colony,
a more effective strategy is distributing intelligence between decentralised
actors located on the field, at the industrial machinery level. AI embedded
in the edge devices and directly in the many IIoT sensors deployed inside
the industrial equipment can progressively build hierarchical, advanced rep-
resentations of the raw data collected. Edge and IIoT devices augmented
with capabilities to perform AI-based functions for vision, perception, sensor
fusion etc., can collect information, distil it in a high information density
format, and then transfer it to a more performant on-premises edge processing
capable of using this information for building a context awareness and acting
accordingly to it. The edge processing unit might then be reporting to a
centralised broker for data collection or a cloud-based AI service. However,
the main functionality of the system is deployed locally, at the edge, enabling
advanced low-latency local behaviour such as human-machine cooperation
and change detection.

AI tools and methodology - addresses the development of tools and methods
required for implementing AI in production systems. The focus is on estab-
lishing a toolchain that moves AI services from the cloud to the edge and
applies them to safety-critical domains with real-time solid capability and
reliability requirements. This toolchain includes the technical implementation
and a principled methodology that allows system developers and integrators
to apply AI in their specific domain. The fast progress of AI provides tools
that helped speed up research and development by standardisation and state-
of-the-art open-source methods to a broad community. Software tools like
Google TensorFlow have set a standard that enables simple code sharing
and quick reproduction of results. The development is fuelled by openly
accessible project repositories such as GitHub, free databases with training
data such as ImageNet, and dynamic training environments such as Ope-
nAI Gym. Current AI tools are optimised for research or cloud services
and therefore do not fulfil the robust requirements of production environ-
ments (real-time capability, safety, reliability, guaranteed service quality,
etc.). Adopting AI methods and moving them from cloud to edge therefore
addresses the areas such as hardware, software/libraries, data, and algorithms.
The AI-based industrial equipment requires hardware that addresses the
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factory floor’s needs (e.g., high-performance, energy efficiency, reliability,
real-time capabilities etc.) and can be integrated into IIoT devices. AI systems
in the industry are implemented in decentralised architecture and distributed
over a heterogeneous set of devices, which define the requirements for the
software infrastructure. Software and libraries are needed to address the
safety and reliability requirements for AI-based applications in the industry.
These requirements are not reflected in current AI tools, and deep analysis
is required to identify and add missing features, including appropriate work-
flows for testing and validation. Data from manufacturing facilities is critical
for the training/learning of AI-based models and algorithms.

In many cases, the industrial data is classified and costly to collect.
New AI methods and techniques for data anonymisation are needed that
allow data sharing for training without exposing confidential information. AI
algorithms and run in many applications on high-performance hardware. To
enable analytics and processing at the edge, optimisations of these algorithms
are needed to run at the edge on resource-constrained IIoT devices without
compromising the performance. This also applies to the investigation of
AI methods capable of real-time operation and online learning. Introducing
AI methods requires a structured methodology for selecting appropriate AI
tools for a given task and integrating them following the requirements of the
domain [4].

IoT Devices - considers the hardware/software aspects related to the practical
implementation of the other key targets on IIoT devices deployed in industrial
machinery. This includes components for sensing, actuating, connectivity,
and end node IoT processing.

In the industrial scenario, the primary constraint about IIoT sensor/smart
devices is their physical footprint. Sensor devices must be placed directly
within parts of moving machinery, putting severe limitations on their size
and capability to be wired. A second constraint is that these devices need
long battery life and require “zero” maintenance, ideally outliving the piece
of machinery mounted on with “zero” human intervention. Fulfilling both
constraints require sophisticated and state-of-the-art IIoT device design.
Traditional architectures for these end node devices leverage small-scale
microcontrollers (e.g., ARM Cortex-M0 class) to minimise the compute
power envelope, coupled with button batteries to ensure long life and minimal
footprint. End nodes of this kind can collect sensory information, send it to a
central server via wireless communication and go back to sleep.

Implementing distributed intelligence and deploying advanced AI-based
functions directly on the IIoT devices requires much higher performance
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available on the device, which makes fitting within the constraints discussed
above much more difficult. Therefore, devices designed within the project
must use advanced high-performance, AI-dedicated/capable microcontrollers
with much better power efficiency techniques. The wireless capabilities
need to include energy-efficient communication and exploit an overall more
advanced architecture, integrating multiple sensors with embedded in-plane
analytics and dedicated hardware architectures for AI and inference.

6.3 AI Technologies

The success of industry-grade embedded AI on edge devices directly depends
on the availability of dedicated central processing units (CPUs), graphics pro-
cessing units (GPUs), and hardware accelerators architectures for electronics
components and systems that are powerful enough to fulfil the full potential
of state-of-the-art AI methods.

By extending Moore’s law, as illustrated in Figure 6.3, silicon-born AI
takes full use of advances in semiconductor technology and even improve

Figure 6.3 Silicon-born AI effect on Moore’s Law beyond the current silicon technology
developments.
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the performances by leveraging additional scaling effects of “More Moore”
and “More than Moore”. The adoption of AI technologies in the industry can
be substantially accelerated by making the required compute power available
at the edge and thereby enable completely new AI applications that are not
available for industrial applications yet.

In the short term, AI is implemented on readily available AI capable CPUs
that include essential support for accelerating AI models (e.g., extension for
vector operations). This is realised by model compression techniques that can
reduce parameters in neural networks by factors of up to 50.

Dedicated AI methods can be implemented purely in software to enable
industry-grade AI for data processing at the edge. Industry-grade AI must
comply with the robust requirements of industrial applications and can there-
fore not be implemented by applying only the existing AI algorithms to
industrial tasks.

AI techniques and methods are optimised to execute on AI-based hard-
ware architectures designed for industry and featuring enhanced connectivity
capabilities for fast communication in distributed networks of embedded IIoT
devices.

However, growing amounts of data and new AI methods require larger
models and more AI performance support. In the mid-term, “More Moore”
will enable the design of AI-enhanced processing units that handle more data
and larger models at lower response times.

Dedicated silicon-born AI hardware components, design languages,
application generators, design automation tools, and respective standard-
isation can address AI features directly in the chip design to leverage
performance speedup through the advancement of Moore’s law.

“More than Moore” technologies allow heterogeneous functional pro-
cessing units on a single chip in the long term. This makes novel neuromor-
phic processing units (NPUs) tailored to the execution of large- scale neural
models in real-time with maximum power efficiency available for industrial
applications. Neuromorphic computing can also support future brain-inspired
AI technologies.

More dense system integration enabled by “More Moore” technologies
increases the AI algorithms performance, and more heterogeneous integration
enabled by “More than Moore” technologies increases the AI functionalities.
Both enlarge the potential for industrial application of AI even further.

The silicon-born AI maximises the benefits of Moore’s law and revives it
beyond the current semiconductor/silicon technologies while enabling native
AI computing and the native embedding of AI algorithms directly in silicon.
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Through this approach, progress in semiconductor technology automatically
translates to better performance for AI applications running on embedded
edge computing. “More than Moore” technologies additionally address the
integration of AI-specific computational units and sensor/actuator devices on
a single chip and thereby also accelerate the speedup of silicon-born AI for
industrial applications.

Implementing a roadmap that builds on silicon-born AI supports and
accelerates the adoption of AI by European’s industry to address its most
urgent priorities in digitisation, such as mastering complexity, increasing
flexibility, maximising efficiency by moving the intelligence to the edge and
providing new distributed reference architectures [6] that are aligned with the
industrial requirements. The demand for high AI performance is fuelled by
technological (e.g., intelligent sensors/IIoT devices generating more useful
data) and industrial factors (e.g., moving from linear to network processes).

The new industry-grade AI methods require to be tailored to the European
industry’s specific needs, and the development of AI-based hardware keep up
with the growing demand for AI through the advancement of Moore’s law.

6.4 AI Application Areas

Various industrial sectors are currently experiencing the most radical changes
since assembly lines and the rise of mass production. Product complexity is
continually increasing while customers simultaneously demand individually
configured and manufactured products.

Many industrial AI systems are built around a centralised paradigm where
machine learning solutions are delivered as a part of cloud-based APIs and
software packages deployed on remote servers of AI providers. The future
requires a paradigm shift by moving toward decentralised and distributed AI
that can run and train at the edge on local intelligent devices in industrial
applications or make decisions in decentralised networks like blockchain. The
transition to decentralised and distributed AI is enabled by new technologies
that allow for crowd-training of ML algorithms, device-centred AI that runs
and trains ML models on mobile IIoT devices, and AI in decentralised
autonomous organisations on heterogeneous networks.

Intelligence on an edge device allows it to process information locally and
respond quickly to situations instead of communicating with a central cloud
or server. For instance, an autonomous AI system must respond in real-time
to what’s happening on the production line. Decisions are time-sensitive, and
latency is critical for many mission-critical industrial processes.



6.4 AI Application Areas 183

The AI4DI provides AI-based technologies at the edge for digitising
the industry by reducing costs, save time, optimising/improving processes/
products/services, increasing quality by enhancing industrial processes, and
built and sustain a dynamic AI technology ecosystem in Europe.

The project develops IIoT technologies, AI-based hardware, software,
models, and algorithms to enhance processes based on repetitive tasks, focus-
ing on replacing process identification and validation methods with intelligent
technologies across automotive, semiconductor, machinery, food/beverage,
and transportation industries.

The following sub-sections provide an overview of the topics covered in
the five industrial sectors. The different use cases are presented are presented
at different levels of detail in [7].

6.4.1 Automotive

Digitisation is an essential prerequisite for tracing the production process
along the entire supply chain and enabling future innovations in the automo-
tive manufacturing industry. Growing data and new non-linear manufacturing
paradigms yield massive data sets that humans can no longer interpret. AI,
therefore, becomes an essential tool for processing this data. It will accel-
erate the automotive industry also have a significant impact on automotive
companies’ finance and control. Maximum data transparency is essential for
AI-enabled analysis, optimisation of automotive production processes and
supply chains. When the required data is available in real-time, the potential
of AI methods such as DL, ML, expert systems and distributed autonomous
agents is enormous. So far, the planning and operation of automobile pro-
duction processes still require human planning and could be made more
responsive and automated with AI.

Improving the responsiveness and automation using AI-based technolo-
gies covers the complex logistic processes across deep supplier networks with
the potential of optimising the complete supply chain, including prediction of
future system states or even autonomous control.

AI4DI addresses the AI-based technologies and applications for opti-
mising logistic processes to reduce transport costs and the environmental
impact.

The AI-based technologies and applications in the automotive indus-
try cover two main areas, AI-supported automotive manufacturing and
logistics and real-time predictive maintenance. A list of the demonstrators
implemented under each application areas is presented below:
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Inbound logistic process optimisation

• Inbound logistics process optimisation - addresses the systemic analysis
and decision-making for responding to critical supply chains. Different
data streams are injected into the AI core to react to disruptions as
quickly as possible with suitable measures.

• Assembly process optimisation - based on computer vision systems
and deep learning methods, ensures correct installation, and enables an
ergonomic evaluation of the workers’ activities.

• Autonomous reconfigurable battery system - aims to combine various
retired batteries with very heterogeneous performance characteristics
within one battery system. For this purpose, it is essential to accurately
determine the state parameters, like the state of health and state of charge
(SoC) of each single battery cell during the operation.

• Virtual AI training platform for robot learning - uses reinforcement
learning (RL) to address the challenge of bringing autonomy in indus-
trial robotic manipulation. Advanced simulations are used to virtually
train the policy network by providing multitudes of realistic synthetic
data.

• Bluetooth low energy (BLE) localisation in asset tracking - focused
on indoor asset tracking based on Bluetooth wireless technology. The
functionality of low-cost and BLE based components are enhanced by
AI technology designed to analyse the non-deterministic signal received
from tracking tags.

• Autonomous mobile robotic agent – addresses a multi-purpose robotic
platform for indoor use intended for autonomous transportation of the
factory’s material, goods, or tools. AI algorithms deliver autonomous
and cooperative behaviour even in complex environments, and AI tra-
jectory planning manage distributed intelligent traffic control ensuring
fast and reliable delivery within the factory.

Real-time predictive maintenance

• Predictive health-monitoring system for machines on the level of a
digital twin – addresses a combination of AI methods and mathematical
damage models connected to the operation of an e-motor unit for real-
time failure prediction and diagnostics. To evaluate and monitor the
asset’s current health status, the system processes operation data in real-
time at the edge to detect anomalies and conclude upcoming failure
occurrences or required maintenance actions.



6.4 AI Application Areas 185

6.4.2 Semiconductor

The AI technologies open various opportunities for semiconductor manu-
facturing by using AI-based systems in different co-existing models in the
datacentres and on-premises at the edge and embedded in the semiconductor
manufacturing equipment. These AI-based systems optimise and improve
the efficiency of processes for different semiconductor technology nodes
and support the acceleration of the design and manufacturing of multiple
hardware architectures (e.g., CPU, GPU, NN accelerators, FPGA, dedicated
ASICs, etc.), addressing a large set of heterogeneous applications.

AI-based technologies support semiconductor manufacturing facilities
optimise and improve efficiency during the research and chip-design phase.
The AI methods are used for eliminating defects and out-of-tolerance process
steps that can decrease/avoid time-consuming iterations, accelerate yield
ramp-up, and lower the costs required to maintain yield. The AI-based
techniques are used to automate the time-consuming physical layout design
and verification processes.

The AI-based technologies and applications in semiconductor manufact-
uring industry, address the following areas AI-based failure modes and
effects analysis (FMEA) generator, AI-based 3D inspection for quality assur-
ance, fault package detection, automatic interpretation of scanning electron
microscope (SEM) images from semiconductor devices, silicon package
fault detection and digitised support for product definition. A list of the
demonstrators implemented under each application areas is presented below:

AI-based FMEA generator

AI-based FMEA assistant – development of an FMEA assistant tool to
support the engineers to analyse the existing information efficiently. FMEA
assistant is created by using existing data from the manufacturing process like
structured or semi-structured FMEA, Failure Analysis (FA), 8D documents,
and other domain-specific unstructured texts like production tools manuals,
handbooks, and process descriptions patents and similar.

AI-based 3D inspection for quality assurance

• Neural network for predicting critical 3D dimensions in MEMS inertial
sensors – addresses the use of ML to predict product parameters of
inertial sensors, which are determined by the 3-dimensional shape and
dimensions of the MEMS device. Data is collected from several process
sources, including product measurements in various process steps and
processing machine conditions.
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• Machine vision system developed in the wafer inspection production line
- processes the microscopic images of semiconductor wafers and detect
surface defects, providing the results in a readable form, either in a table
with coordinates and size of each defect or in the form of a heatmap of
defect location on a wafer.

Fault package detection

• Wafer fault classification - provides a device-integrated solution for the
wafer classification problem. The device gets pictures from a camera and
perform real-time data analysis, giving the category to which, the wafer
default belongs and binary faulty/non-faulty information.

Automatic interpretation of SEM images from semiconductor devices

• Automatic inspection of SEM cross-section images for technology veri-
fication – addresses a fully automated measurement toolchain. Research
focuses on computer vision tasks and additionally on methods for
automated analysis techniques of semiconductor front-end technologies.

Silicon package fault detection

• Anomaly detection on wire bond process trace data - covers the supply
chain’s relevant functionalities: developing the AI-based model, deploy-
ment, and visualisation. The work addresses the limitations regarding
the availability, scalability (number of eq. and recipes) and degree of
integration into the production data landscape.

• Optical outgoing inspection - provides an optical inspection solution
working on the same or similar hardware and software environment
providing anomaly detection with a pre-trained neural network (NN)
for detecting deviations, image labelling for supervised learning and
deployment of the AI-based model for image analysis and prediction.

Digitised support for product definition

• Digitising product definition – addresses the assessment of product
definition via automated application simulations as planned via ML
and formulate requirements human- and machine-readable to boost
automation in the design and development phases.

6.4.3 Industrial Machinery

AI technologies are becoming a necessary part of manufacturing and automa-
tion across engineering, operations, and maintenance in the machinery and
industrial equipment industry. AI applications start to be used more in
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high-end machinery and gradually migrate toward simpler machinery, such
as palletisers and packaging machines.

In the machinery and industrial equipment industry AI is deeply embed-
ded in the controller, the engineering tool, or the devices controlling the
manufacturing line. The AI embedded solutions used for taking decisions
and replacing the programmable logic controller (PLC), require techniques
that are near 100% transparent to be accepted in a conservative industry such
as industrial automation. The growth of industrial personal computers (IPCs)
in manufacturing transformed what AI-based PLCs are capable of. In the
machinery and industrial equipment industry, AI can be integrated into engi-
neering and programming tools with embedded natural language processing
(NLP) autocorrect features or automatically suggesting code and changing
programming controllers. Using low-cost, robust and energy-efficient high-
performance AI chips, AI becomes a necessary part of the controllers in the
automated production lines.

New approaches to computer vision andML open a variety of possibilities
in industrial automation to optimise processes and improve the safety of
human operators in the industrial environment. The areas of improvement
cover areas from detecting defects of the goods and the erroneous behaviour
of machinery to the detection and classification of all the objects present and
acting in the working area.

The supply chain in machinery and industrial equipment develops to inte-
grate the support of DL in the industrial environment, allowing the dynamic
adaptation of the behaviour of the machinery with a re-training of the AI
support on cloud level and the deployment at the edge of many precise high-
efficient devices for the local processing and analytics. The interaction with
the machinery and the data retrieved from different types of sensors and
IIoT devices produce a consistent amount of data processed by the AI-based
services to improve machine learning and the continuous re-training of the
AI-based embedded modules.

The AI-based technologies and applications in the industrial machinery
industry comprise two main areas, wood machinery with innovative human-
machine interface (HMI) and smart robots. A list of the demonstrators
implemented under each application areas is presented below:

Wood machinery with innovative HMI interface

• Wood machinery with the perception of the surrounding environment –
addresses the use of specific sensors (e.g., ultrasonic sensor grid sen-
sors) to detect the presence of obstacles near a woodworking machine,
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slowing down or stopping the machine’s cabinet in case of detection. AI-
based techniques are used for the refinement of the sensing and detecting
capabilities to guarantee a higher level of reliability of the detection.

Smart robot

• Smart robot - addresses how to enable robots to “see”, “feel”, and inter-
face with humans and the environment around them using a universal
multi-modal cognitive sensing platform providing synthetic real-life like
data generation for AI-training, intuitive human-machine interaction,
and usage of Robot Operating System (ROS) for adaptability of different
industrial robots, sensors, and other equipment.

6.4.4 Food and Beverage

The implementation of IIoT and robotics solutions in the food and beverage
industry sector has supported overcome critical issues related to production
and execution by eliminating the possible human errors while reducing the
redundancy in work performed by manual labour. AI fuels innovation in the
production and packaging of food and beverage to reach expectations regard-
ing the quality of the products delivered to the consumers and their related
impact on the cost. To attain the potential trade-off between quality and
price, industry stakeholders are actively leveraging the potential of AI across
various applications, such as product design, quality control, maintenance,
and consumer engagement, among others.

The integration of AI technology increases the efficiency improvements
in the food and beverage industry, with significant reductions in downtime,
repair costs, and additional labour requirements and cost. Companies in
the food and beverages production and manufacturing industry leverage the
benefits of AI through the use of NNs, ML techniques, advanced analytical
tools, combined with image recognition and computer vision technologies for
optimising the manufacturing processes.

The food and beverage processing lines include continuous monitor-
ing IIoT technologies used in the predictive maintenance process that
collects real-time data from multiple and varied IIoT sources placed on
motors/equipment, combines them and uses ML techniques to anticipate
equipment failure before it happens. Predictive maintenance of production
machinery is for instance based on sound or vibration analysis computed
directly by IIoT devices and vision-based quality control of the product at
the edge for production process optimisation. Parts of the collected data is
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sent to a cloud service that continuously optimises a detection model. Con-
trol applications directly influence the production process and are therefore
especially critical considering their real-time capability and reliability.

The AI-based technologies and applications in the food and beverage
industry comprise two main areas, beverage production - Champagne and
food production - soya beans. A list of the demonstrators implemented under
each application areas is presented below:

Beverage production - Champagne

• Environmental monitoring system – addressing the implementation of
an industrial monitoring system that enables an accurate analysis of the
production process in the vineyards and caves. The data obtained by this
monitoring infrastructure enable accurate decision-making accordingly
to an external environmental condition that can impact the production
step under analysis.

• Autonomous environment-aware - addresses the implementation of an
AI-based method of capturing images and data using an autonomous
robot to support cameras and sensors. The data analysis from the vine-
yards allows precise decision-making regarding the yield, vine diseases
and missing vines.

• Quality control system – addresses the setting up an image acquisition
system in the Champagne presses facilities. The data analysis from
the presses allows the neural network training based on the quality
classification of the grapes.

Food production - Soya beans

• Production process optimisation – addresses soybeans production pro-
cess optimisation using IIoT-based sensors for visual analysis, tem-
perature, humidity, and moisture throughout the preparation phase and
correlates real-time data in those parameters using AI-based models.

• Predictive maintenance – addresses a solution for implementing an
intelligent monitoring system that separates the equipment’s normal
condition from abnormal conditions. IIoT-based sensors are installed
to measure different parameters such as vibration, current, sound, tem-
perature etc. Data from the IIoT devices are sent to AI-based models
that correlate with normal and abnormal conditions and implement a
predictive maintenance solution.
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6.4.5 Transportation

Mobility-as-a-Service (MaaS) based on vehicle sharing changes people’s
transport habits and introduces new mobility modes. Future automated
vehicles enable 24/7 driving and serving people with fewer vehicles on roads.
MaaS steps taken without automation aim to improve the availability of
public transportation when needed.

The main challenge with public transport is the mean of transportation
available when needed. Buses, trams, etc., are bind to the schedules and
cannot offer ad-hoc on-demand solutions.

Therefore, on-demand taxis and mass transportation have great poten-
tial to change people’s mobility in cities and rural areas where the ageing
population is suffering from available transport services when needed. In
addition, fewer vehicles and buses mean fewer pollutions thus, leading to
better transport sustainability.

The application of AI in the transportation industry is accelerating the
next generation of Intelligent Transportation Systems (ITS). Intelligent edge
computing technology supported by high-speed connectivity is used to pro-
cess AI decision-making at the vehicle and edge level without connecting to
a server in the cloud.

AI technologies in traffic management enhance the efficiency of the
mobility systems it integrates with and play a significant role in developing
and deploying new and innovative environmentally friendly solutions to
operate vehicles for travel and transportation.

The AI-based technologies and applications in the transportation industry
cover one central area, MaaS development of AI-based fleet management for
supporting multi-modal transport. The demonstrator implemented under this
application area is presented below:

MaaS, development of the AI-based fleet management for supporting
multi-modal transport

• MaaS - AI-based fleet optimisation tool – addresses an AI fleet man-
agement of MaaS solution, in which two automated last-mile vehicles
are controlled according to the transport demands of the users. The data
processing is done in the vehicles and the infrastructure by reducing
links to the cloud and increasing decentralisation. Novel computation
platforms are utilised for accelerated processing. A neural network (NN)
based analysis program for predicting travel times is implemented. The
machine learning-based, improved data pipeline leads to improvements
in terms of waiting times for passengers.
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6.5 AI Technology Roadmap for Digitising Industry

The transition towards a more integrated technology converging combining
AI with other cutting-edge technologies like IIoT, edge computing, and con-
nectivity is essential to reframe the challenges that the European electronic
components and systems community need to tackle in the future. AI4DI
stakeholders drive activities for community consensus and take the lead
on the compilation of multi-annual research roadmaps addressing human-
centric AI technologies aligned with roadmaps of other related technologies.
The roadmap guides how the European electronic components and systems
community can obtain a competitive advantage in designing, developing and
deploying silicon-born AI, AI-based embedded systems in industrial sectors.

Building the AI roadmap results from exchanging ideas and concepts
at the European level and aligning the work with activities at the global
level. The approach for interaction with related industrial sectors is primarily
focused on analysing existing challenges and gaps of the related technology
areas and specific workshops exploring the intersection of AI technologies
with key stakeholder groups.

The perception of the AI technologies by European citizens and the
industrial sectors that it affects play an essential role in the broader adoption
debate of AI technologies. Industrial AI solutions may lack direct consumer
scrutiny, but they are under the evaluation of the industry stakeholders that
strongly and robustly influence the sector regulations and standards.

The AI4DI work on the AI road-mapping activities provides an excellent
framework for the industrial stakeholders to prioritise resources and align
the vision of the electronic components and systems community to focus on
essential breakthroughs to reach the next level of AI technology evolution for
digitising industry.

The shift of AI methods from cloud to edge is the primary approach of
AI4DI for digitising industries and marks the starting point of a comprehen-
sive transition regarding the control of industrial processes and functionality
of devices. The AI4DI roadmap lists the significant milestones of this
transition driven by AI methods operating on the edge.

The AI technology developments influence the evolution of IIoT devices,
silicon-born AI, embedded systems-born AI, AI methods, models, algo-
rithms, and integration in the manufacturing processes. The integration of
complex AI-based systems is highly linked and dependent on all these
elements. The increase in computing power and industrial user experience
with single AI methods supports integrating interconnected machines and
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automated data analysis and optimisation of processes. This development
enables the transition from linear manufacturing processes to AI-controlled
value chains as a network of many flexible interconnected machines as part
of a distributed production line. More powerful AI methods implemented on
IIoT devices at the edge increase these devices’ functionality aiming at self-
learning and self-optimisation features. The ongoing parallel development
of AI methods for cloud applications plays a significant role in developing
efficient processes and functional devices at the edge along with the roadmap.
Implementing industry-grade embedded AI on edge devices directly depends
on the availability of dedicated silicon-born AI architectures for electronics
components and systems that are powerful enough to fulfil the full potential
of state-of-the-art AI methods.

6.6 Conclusion

Intelligence on the edge devices in industrial environments allows it to
process information locally and respond fast to situations instead of com-
municating with a central cloud or server.

AI raises new ethical and legal questions related to liability or poten-
tially biased decision-making in industrial environments. AI4DI actively
supports the activities for progressing ethical guidelines on AI development
in industrial environments by guiding the industrial stakeholders on the
new challenges brought by AI and the interpretation of the liabilities in the
light of technological AI developments to ensure legal clarity for industrial
consumers and producers.

The article gives an overview of the ECSEL AI4DI project that develops
AI-based solutions to bring intelligence processing from the cloud to the edge
by providing intelligent technologies across industrial sectors such as auto-
motive, semiconductor, machinery, food and beverage, and transportation.

The project aims to provide AI-based technologies at the edge for digi-
tising the industry by reducing costs, saving time, and increasing quality by
enhancing industrial processes. The project’s advancements enable optimis-
ing/improving industrial processes, products, services, and support building
and sustaining a dynamic AI technology ecosystem in Europe.
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Abstract

We discuss the role and impact of AI on the Industrial Internet of Things
(IIoT) as envisioned by the European flagship project on 6G, Hexa-X. The
envisioned ecosystem of trustworthy collaborative digital twins (DTs) lays
the foundation for emergent intelligence (EI) and utilization of AI for indus-
trial scenarios. One important building block for utilization of AI in IIoT
is the inclusion of the human: we therefore provide insights on AI at the
intersection between DTs and human-machine interfaces (HMIs).

Keywords: Hexa-X, industrial internet of things, digital twin, artificial
intelligence, emergent intelligence, human-machine interfaces, immersive
technologies

7.1 Introduction to the Hexa-X Project

Hexa-X1 is the European flagship project on 6G. It defines the vision, use
cases, as well as key performance and value indicators for upcoming 6G
systems. The project studies technical enablers for novel 6G capabilities
and provides an initial end-to-end architecture for 6G systems. The key

1hexa-x.eu
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societal values of sustainability, trustworthiness, and inclusiveness drive the
contributions in the project [1].

Use cases considered in Hexa-X span seven families, as detailed in [1].
The use case families from robots to cobots and massive twinning capture key
characteristics of IIoT for which technical enablers and concepts are being
developed in the project. In the following, we focus on DTs and the use of
AI and novel HMIs as technical enablers and their impact on IIoT. First, we
outline an ecosystem concept for DT that highlights the relations between
twinned aspects of the IIoT and the underlying information flow enabled by
a 6G system with its novel sensing and processing capabilities. We discuss
the concept of EI being enabled by (collaborating) DTs and its impact on
IIoT and elaborate on the potential of collaboration among local and global
management entities and their respective DTs to benefit from additional local
insights in AI-based decision making and optimization. Before concluding
the discussion, we analyse the role of AI at the intersection between DTs and
novel HMIs.

7.2 An Ecosystem Concept for Digital Twins in IIoT

With the massive deployment of DTs, in the era of 6G, conventional cyber-
physical systems (CPSs) that have been widely used in industrial scenarios
is envisaged to evolve into a human-centric industrial ecosystem, which is
illustrated in Figure 7.1. With a generic framework to support constructing
and maintaining a digital replica for an arbitrary physical entity, it allows
every machine, every person, and every component of the data infrastructure
that is involved in the industrial process to offload its context information to
the digital intelligence (which is commonly deployed in the cloud or at the
network edge), analyse it online, and exchange such information with other
involved entities or DTs in an agile, efficient, and secured fashion.

To support such an ecosystem, future IIoT must leverage the numerous
advantages and conveniences provided by 6G DTs, which are including,
among others: the ubiquitous and ultra-dense connectivity to support massive
twinning; the timely status synchronization between the physical entities
and their DTs; the data-driven intelligence that generates empirical insights
on the physical environment and processes. Empowered by these technical
enablers, various novel use cases can be envisioned, which we have clustered
into eight categories upon the flow of information between the cyber and
physical/human worlds, as shown in Figure 0-1. In the following sections of
this chapter, we will focus on three selected technical aspects to demonstrate
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Figure 7.1 The ecosystem of 6G human-centric industrial DTs, with the arrows indicating
the direction of the information flow.

how the combination of AI and DT will impact these emerging use cases.
More specifically, we will introduce 1) what is Emergent Intelligence (EI)
and why it benefits from massive twinning; 2) how network-aware DTs can
be used to generate local insights to support smart factory applications; and
3) how AI-empowered DTs can be exploited in human-machine interface to
realize collaborative robots (cobots) and Extended Reality (XR).

7.3 Digital Twins for Emergent Intelligence

Future IIoT is envisaged to connect everything and everybody, not only the
physical entities but also their DTs. Rich physical and context information
can be therewith efficiently collected, shared, and exploited. Such ubiquitous
interconnection and universal information sharing among equipment, prod-
ucts, infrastructure, and human participants will help to deliver an immersive
AI capable of accomplishing future industrial tasks, which are not only
complex, but also polymorphic and flexible (e.g., the manufacturing process
may vary significantly from one product to another, and an occasional update
of the AI solution is demanded in the future flexible manufacturing scenario).

Nevertheless, while promising numerous new use cases, the immersive AI
in 6G IIoT is also raising concerns in safety, security, and data privacy. Most
conventional AI solutions require the aggregation of user data at a central unit
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that makes decisions for all users as the AI engine, which leads not only to a
concern of privacy leakage, but also a security risk of model manipulation
through malicious data injection. Over the recent years, technologies like
Federated Learning (FL) have been intensively studied and well developed to
address the privacy concern in AI by distributing the responsibilities of data
aggregation and model training to agents. Nevertheless, they cannot yet elim-
inate the risk of manipulation due to their central-model-based nature. As a
model-less mechanism to implement complex system behaviour, EI may play
an important role in future AI applications as a secured, privacy-intolerant
alternative and complement to conventional solutions such as FL.

The concept of EI was first proposed in the late 1980s as a biological term,
which describes the intelligence of animals originating spontaneously and
emergently from many simple units that are interconnected and interacting
with each other in a complex manner [3]. Thereafter, this phenomenon was
rapidly noticed in the engineering field and has inspired to develop bionic
intelligent approaches. The most typical and significant instance of artificial
EI is the family of approaches known as particle swarm optimization [2]. Dis-
tinguished from classical AI approaches that require the task-specific global
knowledge to be explicitly integrated into a problem solver, EI approaches
exploit the numerous agents involved in the task to opportunistically operate
upon their representation-specific local knowledge, whereas the task-specific
knowledge can be separated from the distributed problem solver, i.e., the
agents. A comparison is briefly illustrated in Figure 7.2. In the framework
of classical centralized ML, data are aggregated from users to a central
node, where a task-specific global model is trained and shared by all users.

Figure 7.2 Comparing the conventional AI solutions based on centralized AI (left) and FL
(middle) to EI (right).
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Decisions are also usually made at the central node and sent back to the users,
respectively. In the FL framework, instead of having one global model that
applies for all users, the central node keeps only a so-called central model.

This model is shared with the users, so that every user locally trains it with
own data and make decisions regarding the local model. The local model
parameters of different users (instead of the raw user data) are aggregated
and exploited at the central node to update the central model, which is then
distributed to the users again to assist improving their local models. The
framework of EI, in contrast, does not contain a central node, nor does it
set up any explicit task-specific model. Instead, it relies on the decentralized
information exchange among the users, which are architecturally equal and
have no knowledge of the global task. From the reaction of each user to the
information it collects from the others, some advanced behaviour pattern of
the “colony” of all users can spontaneously emerge.

On the one hand, this model-less and emergent nature grants EI
approaches several outstanding features that can benefit 6G IIoT, including
low computational complexity, minimized computation and communication
latencies, high robustness against local malfunction at arbitrary agent, data
privacy, security, and scalability. On the other hand, 6G will also be able to
enhance the performance of EI: it promises to deliver a ubiquitous, massive,
and reliable connectivity in the IIoT environment, which will support to
build a gigantic system with numerous agents networked with each other.
Enhancements will be therewith introduced regarding the dimension and
complexity of the networked system, as well as the efficiency of interaction
between different system components. All these aspects have been proven to
have critical impacts on the performance of EI solutions. In short words, 6G
and EI are match made in heaven.

Nevertheless, it shall be remarked that the requirements of system scale
and communication efficiency can be usually opposite each other. For exam-
ple, when the number of agents increases within a limited coverage, the
therewith increased access density may cause traffic congestion, resulting in
either a higher latency or a lower link reliability. In another case where the
access density remains consistent but the spatial dimension of the network
increases, the coverage of a single radio access point becomes an issue.
Message relaying will allow agents to interact over a long distance, but
significantly increases the latency. Alternatively, it can be an effective low-
latency solution to limit the communication range of agents but leads to a
degradation in convergence performance. Furthermore, in addition to the user
plane data exploited by the agents to make decisions, a significant signalling
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overhead must be generated to setup and accomplish the communication
sessions between agents, which significantly reduces the energy efficiency
and sustainability of the IIoT system.

To address these issues and support the deployment of EI in 6G IIoT,
DTs will play an important role. In a massive twinning scenario, every EI
agent can have not only its real-time status, context information and semantic
model stored, analysed, and maintained at its DT, but also its decision engine
migrated thereto as well. Thus, the information exchange between different
agents can be shifted from the physical radio environment to the cyber world,
and the radio link between every pair of agents can be replaced by an agent-
cloud link for each individual agent, which will not only dramatically reduce
the traffic load, but also mitigate the massive radio signalling overhead.
Therewith, DTs will improve the radio resource efficiency and reduce the
communication latency for EI applications.

7.4 Network-aware Digital Twins for Local Insight
Generation

Industrial DTs of machines, processes, or whole factories might contain
sensitive and business-critical information that needs to be retained within
a local management domain (e.g., a private network or locally managed
IT/OT systems). Traditionally, industrial DTs did not focus on the network,
but on the industrial application and machinery. With an increasing share of
wireless communication enabling novel Industry 4.0 scenarios and the vision
of 6G as a network of networks, supporting local, independently managed
network islands or sub-networks, this is changing significantly. One way to
allow industrial DTs to benefit from network-awareness and utilize additional
sources of data offered by novel capabilities of a 6G system (e.g., localization,
sensing, computation, or AI as a Service) is the collaboration of DTs as
illustrated in Figure 7.3.

The local DT on the left-hand side of the figure captures relevant aspects
of the Industry 4.0 application or process being executed by several collab-
orating machines and humans. Local network infrastructure (wireless and
wired) enabling this collaboration is also represented in the local DT to aid in
network management and optimization tasks. This local loop of configuration
and optimization based on the local DT is augmented with information from
the 6G DT and its capabilities. Relevant aspects include the joint optimiza-
tion of compute resources by utilizing the respective 6G services, or the
joint optimization of network resources across management domains. Both
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Figure 7.3 Illustration of collaborating DTs in IIoT.

domains could further benefit from a privacy-preserving exchange of sensing
information to increase, e.g., location accuracy or confidence in measurement
data for specific use cases. One example of such an exchange with mutual
benefit is the joint optimization of trajectories of automated guided vehicles
to increase process productivity while at the same time making better use
of available communication resources. Instead of sense-and-react, both sides
can benefit from the proactive exchange of information as foundation for
AI-based decision making in the respective processes.

Being able to limit the exchange of data to trustworthy entities and act in
a privacy-preserving fashion by sharing only the most relevant information
among DTs allows cross-layer optimization for both, local and global man-
agement domains while still maintaining full control over own processes and
data.

7.5 AI at the Intersection between DTs and HMI in
Industrial IoT

The idea behind DTs is to create intangible replicas of physical assets or
processes capable to capture key information that can be used to support
design and planning activities, as well as to help operation and supervision
tasks [4]. Initially developed in the context of, e.g., industrial plants and city
infrastructure, today are progressively widening to encompass any real entity,
including human beings [5].
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There are several technological enablers that are easy to recognize as key
to the implementation of DT solutions. One of them is indeed represented
by mobile communications. In particular, there is a great expectation for the
deployment of 6G networks, as their latencies and data rates are regarded as
capable to make applications such as, e.g., autonomous driving and remote
surgery, finally feasible [6].

The previous sections discussed the major role played in this context by
AI. In fact, with AI, insights gathered through DTs can allow humans to make
better operational decisions. AI can also make DTs more intelligent, to the
point that they can even get able to make decisions and prescribe actions to
the physical world on their own.

Using AI techniques, the DT of a city could, for instance, leverage
information about road works and closures, pollution levels, or even citizens’
habits to manage in real-time connected vehicles traffic [7]. Similarly, the
DT of an industrial plant could constantly monitor machines’ status and
use collected data to instantaneously reconfigure processes to mitigate, e.g.,
downtimes and bottlenecks [8]. In logistics, the AI abilities could allow DTs
to make fact-driven decisions regarding planning and scheduling based, e.g.,
on demand and distribution models, and support the implementation of opti-
mization and control strategies aimed to improve efficiency and, ultimately,
profitability [9].

Indeed, the traditional application domain for the DT paradigm is the
industrial one, within the context of IIoT. A recent review of the role of AI
in this context is reported in [10]. Within the commonly pictured scenarios
for digital twinning, an area in which AI is expected to foster important
developments is that of HMIs. Thanks also to forecasted advancement in
mobile networks and edge computing capabilities, ever new ways in which
the human and machine intelligences cooperate in CPSs can be envisaged.
A typical use case is that of robotics, in which computer vision technology
is essential for the navigation of mobile robots [11] or the interaction with
collaborative robots (or cobots) [12]. Another typical application of AI tech-
niques is that of human-action recognition from images and data collected
by other sensors (like depth cameras) to perform, e.g., trajectory forecasting
and path planning for safety assurance in scenarios involving the operation of
co-located human and robotic agents [13][14].

A final family of technological tools that shall be mentioned in relation
to AI-powered DTs and HMI is that of XR, a term generally used to refer
to a blend of tools like Virtual Reality (VR), Augmented Reality (AR) and
Mixed Reality (MR). XR plays a primary role in the scenarios depicted above
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[15]. As a matter of example, VR-based simulations are commonly used
for visualization purposes in pre-production processes or in the planning of
surgery interventions, whereas AR is typically exploited in customer service
applications or in Head-up Displays typically mounted aboard autonomous
vehicles.

It is worth observing that DTs coupled with AI and XR are expected
to represent extremely powerful tools also towards sustainability. In fact,
the possibility to rely on virtual, distant copies of real-world entities means
avoiding unnecessary travels to the physical location of such entities. This
can be the case, e.g., of remote healthcare or maintenance applications [16].
It also means less energy consumption and waste since, as said, machine
failures can be predicted in advance, and designs validated and tested before
being realized [17].

7.6 Conclusion

In this chapter, we discussed the impact of AI on IIoT from the perspective
of the 6G European research project Hexa-X. We outlined an ecosystem of
collaborating DTs as a potential enabler for emergent intelligence and local
insight generation in a privacy-preserving and trustworthy way. We further
elaborated on the role of AI when it comes to the intersection between the
DT and the way humans interact with it by means of novel HMIs in an
industrial context. In Hexa-X, we study additional enablers for trustworthy,
collaborative DTs and the utilization of gathered data for flexible resource
allocation and dependable operation of applications and services as important
cornerstones for most IIoT use cases.
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Abstract

This chapter touches on several aspects related to the role of Artificial
Intelligence (AI) and Machine Learning (ML) in the manufacturing sector,
and is split in different sub-chapters, focusing on specific new technology
enablers that have the potential of solving or minimizing known issues in
the manufacturing and, more in general, in the Industrial Internet of Things
(IIoT) domain.

After introducing AI/ML as a technology enabler for the IoT in gen-
eral and for manufacturing in particular, the next four sections detail two
key technology enablers (EdgeML and federated learning scenarios, chal-
lenges and tools), one most important area of the IoT system that needs
to decrease energy consumption and increase reliability (reduce receiver
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Processing complexity and enhancing reliability through multi-connectivity
uplink connections), and finally a glimpse at the future describing a promising
new technology (Embodied AI), its link with millimetre waves connectivity
and potential business impact.

Keywords: Artificial intelligence, machine learning, internet of things,
EdgeML, federated learning, mobile communication, 5G, embodied artificial
intelligence, platform economy, millimetre waves, manufacturing, IIoT

8.1 Introduction

This chapter touches on several aspects related to the role of Artificial
Intelligence (AI) and Machine Learning (ML) in the manufacturing sector,
and is split in different sub-chapters, focusing on specific new technology
enablers that have the potential of solving or minimizing known issues in
the manufacturing and, more in general, in the Industrial Internet of Things
(IIoT) domain.

The two main challenges that IIoT currently faces are the security of the
system and the capability to scale the number of devices, which continuously
increase year by year. Among the most suited new technology enablers to
cope with both challenges, AM/ML techniques are a highly discussed topic,
especially the application of EdgeML and Federated Learning (FL) seem
two very promising approaches. Other important issues of IIoT systems are
the complexity at receivers’ side and the reliability of the connections, the
first impacting the terminals’ energy consumption, the latter the minimum
guaranteed quality of service of the overall system.

The structure of the chapter is as follows: Section 2 provides an intro-
duction of ML applied to the IoT domain and Section 3 a description of
both advantages and challenges of applying edge ML. Section 4 elaborates
on FL techniques, their advantages, and the most popular open frameworks
and commercial products implementing FL. Section 5 focuses on the main
computational issues on the receiver side of IIoT systems, providing an
overview of the research carried out in FunKI, a German funded research
project, and discussing how to improve reliability in a multi-connectivity set-
up for the uplink. Finally, Section 6 provides a more forward-looking view on
Embodied AI, a promising approach in IIoT and manufacturing, and evaluates
its potential business impact on future systems.
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8.2 IoT Enabled by Machine Learning

The term Internet of Things (IoT) describes the intersection between the
physical world and digital services. IoT devices are connected to the web and
either stream collected data to cloud servers or receive control commands
from external devices e.g., other IoT devices or mobile phones. IoT devices
are a fundamental part of our daily life and are key for a wide range of indus-
tries, including agriculture, energy, security, smart homes, med-tech, and
automotive. IoT devices typically include various types of sensors to measure
relevant features of an object, e.g., acceleration, orientation, and position, or
to sense environmental conditions. Sensors continuously sample the environ-
ment, which results in the generation of massive amounts of data. In 2018,
there were already 22 B IoT devices in use, and forecasts show that by 2030,
the number will reach 50 B devices worldwide [1]. To tame such complexity
and extract meaningful values from the huge data generated by this rapidly
growing field, ML has emerged as the most promising candidate technology.

The combination of ML algorithms and real-time data provided by IoT
devices will positively impact most industrial applications. For example, data
collected by IoT devices can be used for creating or enhancing Digital Twins
(DTs), as well as for performing big data analytics. When combined with
ML approaches, applications such as just-in-time manufacturing or demand
forecasting emerge. Nevertheless, the transformation to Industry 4.0, where
ML and edge computing are key technologies [2], must deal with several
challenges that might slow down its adoption. Examples of those challenges
are cyber threats or the issue of the integration of legacy equipment, protocols,
and subsystems, which are present in most industrial facilities.

Despite the previously mentioned challenges, multiple approaches have
been recently proposed to use ML in combination with IoT devices [3][4].
ML for IoT has been traditionally accomplished by gathering the collected
data from a group of IoT devices into a central location for training a global
model, which can be used for prediction across devices. Thanks to the rise in
on-demand access to high powered accelerators provided by cloud services,
ML models are increasingly often being trained in the cloud. Once trained, it
is often easiest to deploy the model on the cloud using similar infrastructure
used for training. This approach for training and serving models for inference,
known as centralized ML, may result in a high network usage, as all gathered
information must be streamed to the cloud. Furthermore, the results from
running inference may need to be sent back to the edge. This communication
loop is not ideal for some use cases, especially when low latency and data
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privacy are in focus. Real-time systems, which require decisions being made
in fractions of a second, cannot rely on the communication latency of sending
data to and from a central location. Furthermore, by collecting data centrally,
it is not guaranteed that sensitive data is treated in private and secure ways.

8.3 Machine Learning at the Edge

One alternative to centralized ML is to run the model inference on the same
devices that collect the data. This approach, known as EdgeML, does not
require any data to be sent centrally for performing model inference [5]. As
a result, it addresses some drawbacks of centralized ML, e.g., high network
bandwidth consumption and latency. EdgeML also allows for use cases where
internet connection is not always reliable or even available. Furthermore, as
the data never leaves the device, data privacy poses less problems. EdgeML
is a trend that has recently found its peak and is expected to reach the plateau
of productivity in about two to five years, according to the July 2021 Gartner
Hype Cycle for Artificial Intelligence report [6].

In a standard EdgeML for IoT use cases, the edge devices may not be
powerful enough to run a standard ML model for inference, for example in
the cases of microcontrollers such as an ESP32 [7] or some low-powered,
Linux-capable devices such as a Raspberry Pi [8]. These devices have limited
memory, meaning they may not even be able to load and run a standard deep
learning (DL) model. As such, model compression techniques need to be
utilized to meet memory and runtime requirements. Tools such as TensorFlow
Lite [9], PyTorch Mobile [10], or ONNX Runtime [11] can be used to
optimize the models’ memory footprint and runtime using techniques such
as quantization, pruning, and layer fusion. EdgeML can also be supported by
using specialized HW for ML acceleration on edge, including application-
specific integrated circuits (ASIC) and Field-Programmable Gate Arrays
(FPGA).

Unlike the general-purpose Central Processing Units (CPU), ASICs are
chips designed to address a specific functionality with a reduced set of
operations. ASICs allow for reduced power consumption, higher speeds, and
small footprints. Since model inference only requires a specific subset of
operations, ASICs are the right approach to address use cases related to model
inference. In fact, in the past years, ASICs designed for accelerating model
inference have become increasingly popular, e.g., the Coral Edge TPU [12]
and Intel’s Movidius VPU [13].
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FPGAs allow for re-programming the logic gates on the chip after the
manufacturing process. This flexibility allows for quickly optimising a chip
for a specific model using a HW description language such as Verilog or
VHDL. This added optimization on top of what is provided by an ASIC is a
powerful tool for supporting ML on the edge, especially when the model may
require to be updated over time or cost rather than performance is in focus.

8.3.1 Applications of EdgeML in Industrial IoT

EdgeML can be applied in any use case where network bandwidth consump-
tion, latency, offline functionality, or data privacy is a concern. In an industrial
IoT context, it is often important to optimize for at least a few of these aspects,
making EdgeML perfectly suited for such problems.

For example, consider the predictive maintenance use case in a remote
oil or gas rig [14]. To ensure low downtime and maintenance costs, IoT
sensors installed on the equipment can be used to gather information and
predict when the system is close to failure using ML models. Operators can
then be notified to ensure the issues are addressed in time. Due to the remote
nature of such systems, a reliable internet connection is not always an option,
and even when it works, the bandwidth and latency of the connection cannot
be guaranteed. Due to these reasons, it is not ideal to set up a predictive
maintenance use case using a centralized ML solution as its benefit (the
early warning of potential system failure) is limited by the quality of the
communication connection. If the model is unavailable during the timeframe
where an upcoming failure could have been identified, the system may break,
and the model would not have accomplished its task.

Another application of EdgeML is in the manufacturing domain for the
automated control of cyber-physical systems such as robots [15]. For
example, a robot could rely on a vision component to identify and localize
the position of an item on a conveyor belt. Using this info, it would then
interact with the part in some way, such as grabbing and moving the part
to a different location. Due to the real-time info needed for controlling the
robot in such a dynamic environment, the controlling system cannot rely on
the long communication latency associated with centralized ML. Running
machine vision models on edge will ensure that the info required for making
the split-second decision is available with as low latency as possible.

Finally, the application of automated quality assurance (QA) in a
manufacturing process can also benefit from EdgeML [16]. Standard QA
processes require manual inspection, which slows down the throughput of
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the factory or reduces the number of items that can be inspected. Manual
inspection can be replaced by automated QA processes, which utilize ML
models for quickly identifying defects. To ensure that the QA process is not
a bottleneck in the system, EdgeML can be utilized to perform evaluation
in real-time. Furthermore, by not sending any data to a centralized location,
sensitive data about the manufacturing process does not leave the factory,
ensuring the security of trade secrets.

8.3.2 Challenges in EdgeML

EdgeML brings its own unique challenges, which are not present in a cen-
tralized ML setup [17]. These issues arise from the distributed network of
low-powered devices and lack of direct control over the data.

One challenge is related to fine-tuning of the ML model on device.
Depending on system setup, it may be beneficial to adapt the global model
for each device to make the predictions more relevant. To support this fine-
tuning process, the edge devices must be (i) powerful enough to run the model
training process in a reasonable amount of time, and (ii) they must have the
capability to store and label data locally. The first issue can be addressed
by using more powerful HW such as ASICs or FPGAs. Unfortunately, the
latter issue is not as straightforward to address. Generating the set of ground
truth labels required for training a model can be a challenge, as this cannot
always be automated without human intervention. For example, it is difficult
to fine-tune computer vision models on edge, as human effort is often required
to generate the necessary labels for training (e.g., class, bounding boxes, or
segmentations). When training a model centrally, there is the opportunity to
generate labels by hand, something that is not always possible on device.

The problem of generating ground truth labels not only affects the ability
to fine-tune models locally, but also makes monitoring model performance
on edge harder. Most model prediction performance metrics (e.g., accuracy,
recall, or mean squared error) rely on ground truth information. As such,
other aspects of the system must be monitored as a proxy to prediction
performance. Monitoring is a key component in any production ML system,
as the real world is not static, meaning model performance may degrade over
time. One cause for model performance degradation is concept drift, or the
idea that the underlying properties of what is being predicted may change
over time. For example, the performance of an automated QA model may
change as the quality of the data from the input sensors degrade over time.
By monitoring model performance over time, performance degradation can
be quickly identified, triggering a model retraining cycle if necessary. Once
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Figure 8.1 The global model is first trained in a central location and then broadcast to edge
devices for inference. Edge devices can return data samples to train and update the global
model.

the global model has been updated, it needs to be pushed to edge devices for
inference. Adding to the system a module that supports over-the-air updates
will help facilitate this process (see Figure 8.1). Furthermore, it is beneficial
to follow SW deployment best practices, such as A/B Testing, when rolling
out model updates to ensure that system stability is not affected. In the case
of a model update performing poorly in production, it should be easy to roll
back the changes and revert to the prior state.

While EdgeML alleviates the need to stream all data centrally for infer-
ence, the global model still needs to be trained in a central location before
being pushed to devices for inference. To accomplish this, some data still
needs to be collected centrally for constructing the dataset used in the training
process. Therefore, EdgeML does not fully ensure data privacy, as some
information still needs to find its way centrally. When data privacy is a major
concern, neither centralized ML nor EdgeML are sufficient. Therefore, other
techniques for training models in a privacy context, such as differentiable
privacy [18] or FL [19], have been explored.

8.4 Federated Learning – A Solution to Train ML Models
at Scale while Ensuring Privacy

In 2016, Google proposed a concept for training a model across a set of
devices in a distributed way, which leverages the availability of data across
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Figure 8.2 Visualization of the FL process. The four steps are executed consecutively and
are repeated following the same process until the global model converges.

devices while still preserving privacy [20]. This approach, known as Feder-
ated Learning, ensures that no data ever leaves the device, and yet in the end
of the training process, the output is a global model which can be used across
devices.

The FL process is depicted in Figure 8.2, and it works as follows. In
step 1, a first model design is chosen for training. This initial global model
is distributed in step 2 to a set of devices known as clients or nodes. In
step 3, each individual device trains the model on their local dataset for a
certain number of iterations. The model updates are then collected centrally
and aggregated into a single global model as part of step 4. The steps are
then repeated following the same process until the global model converges.
Finally, the newly trained global model is distributed to the different devices
for performing inference on edge.

FL guarantees that the only info that leaves the device is the one about
the model updates. When combined with EdgeML, the collected data never
leaves the device, ensuring data privacy. This is a crucial aspect in industries
like manufacturing, the energy sector, and Medical Technology (MedTech).
In fact, EdgeML and FL complement each other to reduce bandwidth and
improve data security.

8.4.1 Applications for Federated Learning in Industrial IoT

Due to its focus on data privacy, FL has suitable applications across several
industries. Some of the most relevant applications for FL can be found in the
IIoT sectors, including energy, manufacturing and MedTech.
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In the European energy sector, FL has the potential to improve the
stability of the grid and improve demand and supply forecasting. At the
mid-voltage level, the current European electricity grid is split up into a
group of distribution system operators (DSOs). Each DSO is independently
responsible for their section of the grid and collaboration between DSOs is
uncommon. Normally, a DSO will only interact with the transmission system
operator (TSO), responsible for the highest voltage levels, to ensure stability
and safety of the grid. DSOs are uninclined to share data with other DSOs or
organizations as they may lose their competitive advantage. However, due to
the safety-critical nature of the grid, all parties would benefit from some sort
of cooperation. There is therefore potential for cross-silo (see next section)
FL applications to train models across DSOs without sharing any sensitive
information.

Another potential application of FL is in the manufacturing domain.
Consider a company which produces machines used in factories across orga-
nizations spread throughout the world. It is in the interest of the machine’s
producer to provide the best possible product to its clients, and the integration
of ML use cases is one potential avenue. It is therefore important for the
models to have access to the wide base of machines in the field. However,
due to the potential for trade secrets to be leaked, the clients who own the
machines and the data are unlikely to want to share the information with the
original manufacturer. By employing cross-device FL, the needs of both the
system’s producer and of the clients can be met.

MedTech is an additional application of FL in Industrial IoT. The wearable
health devices domain could benefit from the application of ML, however
the collection and analysis of information such as blood pressure or insulin
levels in a central location are heavily regulated. This makes the application
of centralized ML or EdgeML infeasible, as the data must always remain on
edge. Cross-device FL is one solution to support the training of models across
a large set of wearable IoT devices while staying in line with the regulations.

8.4.2 Federated Learning Scenarios

FL can be split into distinct categories depending on the use case and the
topology of the system in focus.

The first differentiation that can be done is cross-device vs. cross-silo.

Cross-device FL considers a large network of low-powered clients with
limited compute resources. A client could be a phone, a microcontroller,
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an embedded system, or any other low-powered device. Depending on their
usage, these devices may not always be available to perform the resource
intensive training process. For example, not to bother a user, a phone may
only be available for training during night-time while being charged and
connected to Wi-Fi. Due to the low availability and reliability of each client,
a subset of clients should be selected for each round of training. This subset
should be sampled from a representative distribution of the clients to not
bias the model towards clients with a higher availability. Furthermore, it is
expected that some of the selected clients are unable to complete training
within a predefined amount of time. This drop-out rate should be accounted
for in each round in the selection of clients.

Cross-silo FL considers a much smaller network of clients compared to
cross-device FL, each one representing an organization or data silo. As a
result, it is expected that each client is a reliable, high-powered compute
instance in the cloud or on-premises. Due to this stability, we can assume
that every client will be available for training in every round, and there will
be an extremely low drop-out rate. Unlike cross-device, there is no need to
subsample clients during each round of training.

FL scenarios can also be differentiated by how the data is split across
clients (see Figure 8.3).

Horisontal FL (also known as Homogenous FL) concerns the case where
each client has the same set of features, but there are different exam-
ples/datapoints per client. This scenario applies for example to the manufac-
turing use case described in the previous section 8.4.1, where the distributed
machines all collect the same kind of information, but the datapoints are
relative to the specific context of each machine.

Figure 8.3 FL scenarios according to how the data is split across clients. (a) Horizontal FL.
(b) Vertical FL.
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Vertical FL (also known as Heterogenous FL) concerns the case where dif-
ferent clients have different subsets of features, but they share the same set of
examples/datapoints. Due to the examples being shared across clients, special
approaches need to be used to ensure that we can still train models while
preserving data privacy. One promising approach for supporting vertical FL
is secure multi-party computation [21].

8.4.3 Challenges in Federated Learning

A first set of challenges are related to the focus on data privacy. Since data is
never sent to a central repository, standard ML tasks related to training and
evaluating models become much more difficult to accomplish. Normally, a
data scientist would start by performing exploratory data analysis to get a
better understanding of underlying distribution of the data they are working
with. However, standard data exploration is not possible in an FL context due
to the lack of direct access to the data. Luckily, approaches such as federated
analytics can be utilized to get an aggregated understanding of statistics about
the data across clients [22]. Unfortunately, these approaches cannot fully
replace the information and understanding you can get about the data in a
centralized ML context.

As mentioned in the previous section 8.3.2, the challenge of generating
ground truth labels for model training and evaluation on edge also exists in
FL. Ground truth labels need to be generated by each node/client, as they
need labels to train a model. However, due to this requirement, evaluation
of models in FL becomes easier compared to EdgeML, as the standard
evaluation metrics can be calculated on the predictions of the trained model,
with the caveat that approaches such as federated analytics should still be
employed to ensure that data privacy is kept.

Another challenge that ML engineers face when training a model in a
FL context is the fact that the independent and identically distributed (i.i.d.)
assumption no longer holds. The statistical properties of the data per client
are potentially different, leading to possible sources of bias. Algorithms
such as SCAFFOLD attempt to address this issue when sampling the clients
for the federation and during the aggregation of the model updates [23].
Nevertheless, model convergence in a FL context may not be as good as when
the model is trained centrally on the full dataset.

Preventing adversarial actors in the system is another major challenge in
FL. While the data never leaves the clients, there is still potential to extract
information about the training data from the individual model updates [18].
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Therefore, additional steps should be taken to ensure the trust of the model
aggregator. One approach to account for this is to apply the concept of
differential privacy [18]. Furthermore, it is also possible for untrustworthy
clients in the federation to poison the resulting model by injecting bias
[24][25]. Necessary steps should be taken to ensure that the integrity of the
model and of the system is maintained.

Standardizing the data interface in the cross-silo FL case is another chal-
lenge which needs to be addressed. It is often the case that data infrastructure
and schema may be different across organizations and enforcing a single
format for training can be a major data engineering challenge. To support
training, either the individual silos must agree on a shared data format, or the
centralized entity should enforce a schema on all members of the federation.
Exceptional care must be taken to ensure that the formats align, because if
there are differences, the model may not be able to converge to a performant
solution.

8.4.4 Frameworks and products for leveraging Federated
Learning

To leverage the benefits of FL and foster the research and development of
novel methods, many frameworks and several products have been devel-
oped over the past few years [26][27][28][29][30][31]. The following briefly
introduces the most relevant tools from proprietary and open-source domains.

In the open-source world, the current frontrunners are:

• TensorFlow Federated (TFF) is developed by Google as an extension to
its TensorFlow framework [28]. TFF is aimed at research and only sim-
ulates the distributed setup of the data. Due to the close relationship to
TensorFlow, TFF is not DL framework agnostic and therefore provides
no support for other frameworks such as PyTorch.

• PySyft and PyGrid are developed by the OpenMined community [29].
The focus lies on approaches for computing on data you do not own
(not just in a ML sense), including encrypted computations, differential
privacy, and FL. PySyft is responsible for the ML abstractions and has
a tight coupling with PyTorch. However, it does also offer support for
TensorFlow. PyGrid works as intermediary to deploy PySyft workloads
at scale across networks.

• Federated AI Technology Enabler (FATE) was initiated by Webank to
enable big data collaboration while ensuring data protection regulation
compliance [31]. FATE consists of several components, where Federated
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ML implements many standard ML algorithms and supports both the
TensorFlow and PyTorch frameworks. Given the original use case it was
designed for, deployment is focused on cluster environments, meaning
small edge devices are not in scope.

• OpenFL originates from a collaboration between Intel and the University
of Pennsylvania to develop the Federated Tumor Segmentation platform
[26]. Given its early focus on a real-world application, OpenFL can
not only simulate a distributed/FL setup for research, but also handles
deployment to physically distributed scenarios. It is also one of the
few DL framework agnostic solutions, supporting model implementa-
tion in many different frameworks, including TensorFlow, PyTorch, and
scikit-learn.

• Flower, currently under development by a German start-up [27], is a
DL framework that is agnostic and lightweight in terms of setup and
deployment. It provides the possibility to run simulated and real-world
application workloads on different HW sizes, opening a wide range of
usage scenarios.

In the proprietary world, the most used solutions are:

• NVIDIA Clara targets the healthcare sector and considers itself as an
application framework [32]. This includes Graphic Processing Unit
(GPU) accelerated libraries, SW development kits (SDK), and reference
applications for developers, data scientists, and researchers alike. It is
comprised of several components to cover the main steps of the ML
lifecycle in a federated way.

• IBM Federated Learning supports multiple DL frameworks for model
design [33]. It can handle different learning topologies and is aimed at
enterprise and hybrid-cloud settings.

Overall, many frameworks still focus on the theoretical/research side of the
problem, only simulating different clients and distributing data from a central
location, thus running all the computation on the same system. When consid-
ering the non-proprietary solutions, we find that none of the existing solutions
provide the necessary set of features for (enterprise) business applications
while also being quick and easy to deploy. As such, there is unfortunately no
single solution which can bring FL to a wider audience yet.

EdgeML and FL reduce communication complexity by limiting the amount
of information passed to a centralized location. Reducing communication
bandwidth is only one approach to support scalability with a growing number
of IoT devices. Another approach to reduce communication complexity
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can stem from focusing on improving the communication protocols on the
receiver side. In the following section, we explore AI/ML approaches for
reducing complexity in this context.

8.5 Reducing Complexity of RX Processing

In current communication systems, the receiver side is the most computa-
tionally intensive and therefore power consuming part. AI/ML methods are
promising approaches to reduce the receivers’ implementation complexity,
allowing to improve systems by learning patterns and structures from data,
rather than relying on human-made models to approximate the environ-
ment. Moreover, hand-crafted algorithms can be replaced by trainable ML
algorithms that fully learn to solve the problem at hand using data and
trainable parameters. As an example of applied AI/ML techniques, let’s
consider multiple-input multiple-output (MIMO) systems, in which detection
aims to reconstruct parallel superimposed data streams received through
multiple antennas at the receiver side. For MIMO detection, AI/ML have
shown superior performance compared to model-based state of the art (SotA)
approaches [34][35][36][37]. In the following, we will focus on forward error
correction (FEC) decoding, since this is the most computationally intensive
part on the receiver side, which also introduces additional latency since we
usually use iterative decoding schemes. In addition, short packets, which are
common in machine communication system, reduce the performance of these
decoders. In the context of FEC, the application of AI/ML has been explored
to overcome the aforementioned problems and in the following we present
recent achievements in the field of FEC using AI/ML.

Neural Network-based Decoder: A first idea to overcome the mentioned
drawbacks is to make use of AI/ML techniques in SotA decoders and learn
decoding directly from data only with the help of a neural networks (NN)
[38]. A NN usually is a nonlinear function with trainable parameters/weights
that can be adapted by processing data with Gradient Descent methods. As
data input we have the received signal and as output we get the decoded
information words. The weights are iteratively adapted so that the NN
decoder is as close as possible to the original transmitted information words.
Unfortunately, this approach cannot be practically deployed in real-world
scenarios, as the number of required training samples grows exponentially
with the length of the information word, and it is no longer feasible.
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Unrolled Belief Propagation: A way to overcome such limitations is the
use of model knowledge about SotA decoders. One approach is based on
the iterative Belief Propagation decoder, which however is suboptimal and
whose performance decreases for short block lengths. By fixing the number of
iterations of this decoder, a fixed structure is obtained, and trainable weights
can be introduced into the structure. Therefore, such structure can be trained
like an NN so that the performance degradation can be reduced and scaled for
longer block lengths [39].

Auto-NNTurbo Decoder: Another way is to incorporate model knowledge is
the structure of turbo codes [40]. A Turbo encoder is set up on the transmitter
side and a NN is used for decoding. The structure of the decoding NN follows
the structure of the turbo decoder, and it was shown that this approach can
achieve good performance even for longer block lengths [41].

An extension of this idea is to use also an NN to encode and form an
end to end (e2e) system. This is a so-called autoencoder, since the input of
the encoding NN is the information word and the output of the receiving NN
is in turn the information words, so that this e2e chain effectively forms an
identity function. The main difference from a purely data-driven approach is
that the structure of the encoding NN and the decoding NN is based on the
turbo encoder and the decoder structure. Taking advantage of this knowledge,
the resulting Turbo autoencoder [42][43] can scale to larger block lengths, but
not as well for large block lengths.

To reduce the complexity and latency of the FEC decoding, we present
two concepts that utilize the benefits of AI and incorporate knowledge of
SotA approaches to combine the benefits of both worlds.

NN-based Forecasting: A first approach is to use ML with the aid of a NN
to predict the decoder success of SotA decoders, which we named NN-FoC
[44]. This is done by inserting an NN into the receiver chain that directly uses
the received signals to predict whether the decoder will be able to correctly
decode the received packet. Subsequently, the decoder is executed only if the
NN predicts a likely decoding success. In addition, this prediction directly
enables the marking of packets as acknowledged or unacknowledged. This
enables an "Early Automatic Repeat Request (E-ARQ)" and directly triggers
retransmission in case of erroneous packets.

In Figure 8.4 the efficiency η for a standard ARQ scheme in comparison to
the proposed NN-FoC forecasting with E-ARQ and different decoder delays
κ is shown. The proposed NN-FoC can increase the efficiency in comparison
to the Standard ARQ schemes for all decoder delays. In comparison to a
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Figure 8.4 Efficiency η over SNR for standard ARQ scheme in comparison to E-ARQ with
NN-FoC forecasting and a Genie forecaster for different decoder delays κ

Genie, non-practical, forecaster, a performance gap against the proposed NN-
FoC approach is visible. This approach can hence avoid unnecessary decoder
executions, reduce latency, and save computational power. Our analysis was
limited to codes with very short block lengths; therefore, an extension to
longer codes is still an open research question.

Low-Resolution Decoder: From the implementation point of view, the bit-
resolution of the decoder is a significant bottleneck, limiting the possibility
for efficient HW implementations, especially for codes with a large number
of interconnections [45]. Hence, decoders with very-low bit resolution are
a necessary element for receiver implementations that aim to fulfil the high
requirements of future standards [46].

In SotA soft decision decoder implementations, the complexity is reduced
by replacing intensive node operations with simpler approximations and by
reducing the bit-resolution of internal variables via quantization. In recent
literature, systematic design approaches of finite alphabet decoders gained
a significant attention due to its potential to outperform SotA decoding
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algorithms in terms of error correction performance and implementation
complexity.

A novel systematic approach is to design finite alphabet decoders with
very low bit resolution and operations that aim to maximize mutual infor-
mation [47]. This approach is directly related to the Information Bottleneck
Method (IBM) [48][49], which is a novel clustering approach in the context
of unsupervised learning that provides a generic approach for the learning of
discrete decoders with very-low bit resolution (e.g., 3-4 bit) and replaces all
internal node operations by look-up-tables (LUTs). This LUT-MP decoder
approach enables the implementation of efficient high throughput decoder
implementations [50][51]. Further improvements on the efficient implemen-
tation of information optimized LUTs by using low-range integer calculations
are still under investigation [52].

8.6 Enhancing Reliability by Multi-Connectivity
in the Uplink

Manufacturing and industrial applications place very high demands on the
communication system. In particular, a very reliable exchange of information
with low latency must be achieved. SotA control applications with periodic
communication tolerate several consecutive message errors before stopping.
To avoid or reduce costly downtimes, the Radio Access Network (RAN)
needs to be designed accordingly, following the always growing number
of features that appear at teach new generation of the telecommunication
systems [53].

The dense deployment of access points (APs) is a very promising
approach in the industrial environment to meet these stringent requirements
since it improves significantly the average channel quality between the user
equipment and the overall RAN infrastructure. In addition, joint processing
of multiple APs allows exploitation of centralization gains, but also places
additional burden on the communications infrastructure [54][55]. To this
end, the base station functionality can be divided in 5G networks into three
elements [56]:

• Central unit (CU) contains higher layer functions such as RRC and
PDPC

• Distributed Unit (DU) containing RLC and MAC as well as some PHY
layer functions

• Radio Unit (RU) containing the lower layer PHY functions.
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This approach facilitates RAN virtualization with flexible assignment of
computing resources across the three different network entities. The phys-
ical location of these network entities depends on the specific architecture
and available geographical locations. The functional split determines which
protocol stack functionality is executed in which of the three units. In a RAN
system with distributed RUs and shared information processing in the DU,
information about the received signals must be transmitted from the RUs to
the DU via rate-limited fronthauls (FH) for uplink communication. The direct
forwarding of I/Q receive signals from the antennas would lead to very high
FH data rates [57]. Instead, it is more meaningful to perform pre-processing
of the receiver signals in the RUs and limit the FH data rate by forwarding
only the necessary amount of data required for successful detection in the DU.

As discussed in the previous section, IBM has successfully been used
to learn FEC decoder implementations with reduced complexity. Here, we
focus on the ML-based design of quantization schemes and the combination
of discrete signals with varying statistics in the DU.

Information Bottleneck Quantization: we consider the RAN system in
Figure 8.5 with J APs observing the user equipment of interest. In the APs
the noisy observations are pre-processed (e.g., transformation to frequency
domain, sub-carrier wise equalization for OFDM and fine pre-quantization
[58]) yielding the local observation yj for the transmitted symbol x with sta-
tistical relation given by the conditional probability mass function, p (yj | x).
Prior to forwarding the local observations to the DU, the observations yj
are compressed to reduce the FH data rate. As a joint quantization of all
receive signals {y1, y2, . . . , yJ} is not feasible in practice, the observations
yj ∈ Yj are individually compressed to the messages zj ∈ Zj from the

Figure 8.5 Distributed communication system with J access points forwarding compressed
messages to the DU.
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discrete alphabets Zj with |Zj | 
 |Yj | by the local quantizer function
zj = Qj (yj). A joint design of the local quantizers {Q1, Q2, . . . , QJ}
would be desirable and details can be found in [59][60]. Here we just
mention an independent design of the local quantizers Qj per branch j
such that the mutual information (MI) I (x; zj) between the source symbol
x and the quantizer output zj per AP is maximized for a given source
distribution p (x)

Q�
j = argmax

Qj∈Q
I(x; zj) s.t. |Zj | ≤ Nj . (8.1)

Q is the set of all possible quantizer mappings and Nj denotes the upper
bound on the cardinality of the set Zj . By limiting the cardinality Nj , the
FH rate of AP j is bounded by Rj ≤ log2Nj such that rate limitations of
individual FH links can be considered by choosingNj . The objective in (8.1)
is a special case of the IBM [48].

Forward-Aware Vector Information Bottleneck (FAVIB): If the FH links
are not only rate-limited, but also introduce transmission errors such that
the message tj received by the DU on the FH link j can deviate from the
transmitted message zj , it is favourable to incorporate the statistic of the FH
link already in the design of the quantizers. To this end, the objective function
is adapted by maximizing the MI I (x; tj) between the source symbol x and
the receive signal tj per AP at the DU. The FAVIB method presented in [60]
achieves a generalization of the IBM method by e2e data rate optimization
considering error-prone FH by the objective function

Q�
j = argmax

Qj∈Q
I(x; tj) s.t. |Zj | ≤ Nj . (8.2)

With increasing FH error rate, the number of clusters in Zj carrying most of
the information about the source decreases and some clusters are allocated
with vanishing probability. This trend can be interpreted as a type of inherent
error protection performed by the quantization scheme. Similarly, the impact
of error-prone FH links can be incorporated in the joint design of distributed
quantizers [61].

Relative Entropy based Message Combining (REMC): The choice of
each individual quantizers Qj depends on the access statistic p (yj | x), the
cardinality Nj and the FH channel statistic p (tj | zj). Thus, even if same
messages arrive at the DU on two different FH links, their individual meaning
regarding the source message can be different. Consequently, the combining
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step in the DU needs to incorporate the actual meaning of the messages tj in
order to fully exploit the spatial diversity. The REMC approach [62] performs
a clustering of messages with similar meaning p (cν | t1, t2, . . . , tJ) regarding
a given decoder design distribution p∗(c|r) by
rν = QC,ν (t1, t2, . . . , tJ)= arg min

r∈R
DKL (p (cν | t1, t2, . . . , tJ) ||p∗(c|r)) .

(8.3)
Performance Evaluation: A comparison between the 3-bit LUT-MP and
the 4-bit LUT-MP decoders from a previous section for a 6-bit channel
quantization is shown in Figure 8.6. The 4-bit LUT-MP achieves at a BER
of 10−3 a performance gain of ≈ 1 dB for J = 1 and ≈ 0.6 dB for J = 2, 3.
The performance improvement can be further increased by increasing the
number of bits of the LUT-MP. Hence, the e2e performance by using a low-bit
resolution for the forwarding of I/Q data via the FH and the joint processing
at the DU (REMC and LUT-MP decoding) is very close to the benchmark
without quantization and floating-point implementation of the sum product
algorithm (FP-SPA). Thus, distributed APs with joint receiver processing

Figure 8.6 BER performance for 16-QAM with RAPs applying SNR-adapted 6-bit quan-
tizer per AP and REMC in DU for J ≥ 1.
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has been demonstrated to realize high-reliable communication by exploiting
spatial diversity. The IBM-based compression for distributed APs allows for
separated compression at APs while meeting the e2e requirements with low
total FH data rate (only 6 bits per receive signal) and only 3 or 4 bit-resolution
of the decoder.

8.7 Communications in an “Embodied Artificial
Intelligence” Future

By 2030 we can expect wireless networks with terabits-per-second connec-
tivity, paired with compute power equivalent to that of the human brain.
Machines will independently offer and consume complex services on Internet
platforms that operate according to platform-economic business rules. These
human-like capabilities will also lead to completely new possibilities in the
way machines communicate with humans and other machines. In this section
we discuss which opportunities and technical requirements will arise from
these future requirements and possibilities. It is argued that there will be a
strong transformation from constant networking to the principle of “conversa-
tions”, where context and experience are considered. At the same time, future
wireless technology will offer new functions in addition to communications,
which will allow to optimize the use of limited resources like energy, raw
materials, space, time and frequency per application.

Many companies in industrial markets, such as capital goods, are under-
going a fundamental transformation from sellers of machines to providers of
services, offering their customers integrated solutions consisting of goods and
services as integrated value propositions [63]. Driven by synergies between
technological advances and the widespread use of mobile devices, data sci-
ence and the IoT, the ability to connect remotely to physical devices has
spawned radically new types of services [64]. Smart products have become
enablers for the delivery of smart services. They can both collect and analyse
field data and make decisions and act autonomously, thus changing the design
of services and business models [65].

Establishing a platform business model currently represents a particularly
promising strategy for achieving market leadership. The pipeline business
model – “creating value by controlling a linear series of activities” [66],
traditionally implemented by many manufacturers, is being fundamentally
challenged. At the same time, digital platforms go beyond the co-creation of
value with customers propagated in service theory by using two- or multi-
sided marketplaces that enable different types of users to interact with each
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other and carry out transactions. Given the success of platform business mod-
els, it is not surprising that companies with product-oriented business models,
as well as manufacturers looking to evolve into smart service providers, are
considering adopting platform business models. Companies’ interest in this
topic also stems from the observation that competition between platforms
on the same market can lead to a winner-takes-all outcome under certain
conditions [67] and those early movers can gain a significant advantage [68].
In the future, users will mainly be end consumers and machines that are able
to autonomously offer services on a platform like human users. These so-
called embodied intelligence (EI) machines act as providers of intelligent
services.

8.8 Embodied Artificial Intelligence

According to Cangelos [69], EI is the manifestation of intelligent behaviour
in embodied and situated agents in conjunction with a strict coupling
between the agent and its environment (situatedness), mediated by the con-
straints of the agent’s own body, perceptual and mobile systems, and brain
(embodiment).

According to Klocke [70], intelligent agents are autonomous systems that
perceive, decide and act on their own. They are characterized by properties
such as the ability to learn, logical reasoning, creativity and sometimes also
initiative, which are more like human intelligent behaviour than function-
alities of conventional computer programs. In human-computer interaction,
so-called interface agents increasingly operate to mediate between humans
and computer systems, often unnoticed by the user. One of the most important
tasks of intelligent agents is to search for and store information in the world
in which they operate. Every decision, just as with humans, is based on
information and knowledge. Every agent, whether human or SW, must have
distinctive capabilities and algorithms to search for information and store it
as knowledge, the human in the brain, the SW in the computer memory.

Given this background, the ability to learn and the associated expandabil-
ity of the functional and action space is of particular interest. For this purpose,
it is important to understand the learning process or the life cycle of cognitive
systems, which is depicted in Figure 8.7. Such systems should be able to
capture the environment and the respective situation with the help of embodi-
ment, for example through suitable sensor technology or the body itself. In the
further course, the captured information and data points must be processed
appropriately and provided with meaning and semantics. The transformed
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Figure 8.7 The cognitive cycle of an embodied intelligence agent.

knowledge is then transferred into models and possible options for action,
strategies and solution spaces are derived and evaluated. From the different
options, depending on the own objectives, the most promising variant for
the system is selected and the implementation or the interaction with the
environment is started. Finally, the essential step of learning from one’s own
behaviour and the actions and reactions of the environment begins, which are
first observed to learn from them and to reflect on what has been experienced.
In this way future EI Things will interact in and with the platform ecosystems,
build up a knowledge base and realize their goals better and better.

Wireless connectivity, and in particular, device-to-device links (in context
of cellular networks also referred to as “sidelinks” [71]) will be key facilitator
for local distribution of information needed to make ML agents work together
autonomously. However, transmitting raw sensor data (e.g., from cameras)
to agents running in a centralized data centre will unlikely be sustainable
on large scale, given the steady growth of the number of ML systems in
professional and private environments. To address future needs, communi-
cation networks will push the performance boundaries and expand into new
frequencies. Supplementary, each EI agent will collect a-priori information
specific to its task, physical and communication environments, which can be
used to reduce the amount of exchanged information between collaborating
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autonomous IoT systems. FederatedML andmeans for model sharing are first
steps in this direction, as touched in previous sections [72][73]. Due to their
distributed nature, these approaches are a good match for edge architectures.
However, limitations of the underlying communications network also need
to be considered, when deciding how information is represented, what is
shared and how it is propagated through a network [74][75][76][77]. In
this context, key research directions are i) how to collect and represent
context information, i.e., knowledge about an application and its physical
and wireless environment, and ii) how to build, represent and share expe-
rience for collaborating EI agents under dynamic, constrained, and unreliable
communication conditions.

8.9 High Integration as a Central Technological Driver

An EI agent is usually a highly integrated system, i.e., a system that tightly
integrates various previously independent components into one physical
body. In addition to a purely physical integration, these components are also
strongly coupled with each other in terms of energy and communication.
However, the inter-connection of the components is not rigid, but flexible,
mostly depending on the realized application. The installed components can
therefore also serve purposes that are different form the ones conceived
at system design time. This is facilitated by generously overprovisioning
the components in terms of performance and capabilities, rather than them
being derived from a limited set of fixed features in the sense of a “design
to cost”. This design approach leads to minimal functional costs in the
overall view of all applications realized with the system. As a result, the
high integration of machines will displace various existing solutions or even
make them obsolete. Ultimately, a system with integrated functions will
prevail over a composite system with subsequently added function groups, in
which synergies can usually only be created at considerable expense, while
performance will remain the same or even improve. The logical next step of
high integration is therefore EI. In the Stanford Encyclopaedia of Philosophy,
the once insignificant movement of embodied cognition is now said to be
well known. Unlike, for example, ecological psychology [78], which has had
to fight an uphill battle for acceptance by the public, embodied cognition
has gained a large following. EI has been the subject of numerous articles
in popular media. Moreover, there is no area of cognitive science-perception,
language, learning, memory, categorization, problem solving, emotion, social
cognition, that has not been given a makeover by EI [79].
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Figure 8.8 Overview of mmW frequencies. 5G bands expand up to 50 GHz, 6G is expected
to reach 1 THz and also include visible light communications.

One example of high integration of functionality can be observed in the
millimetre waves (mmW) frequency bands shown in Figure 8.8.

The frequency range above 100 GHz holds the potential for channels
with large, aggregated bandwidth. For communication systems, large band-
widths carry the promise of increased data rates, higher traffic capacity
and connection density, finer frequency and time resolution for environment
sensing and potentially a lower latency. Shorter wavelengths bring altered
properties for the interaction of radio waves with the matter in our envi-
ronment and make trade-offs between smaller form-factor steerable antenna
arrays and link budget possible. This brings also great opportunities for
capturing the (physical) environment with radio waves, which in future will
no longer be a by-product but a design target. High resolution of multipath
signal components and fine-grained beamforming are the foundation for
better localization, mapping and tracking of devices and objects. Covering
a large range of frequencies with a radio brings us closer to be able to
explore the physical properties of our environment with spectroscopy. (More
details can be found in [80][81][82][83]84). The functionality needed from
the underlying wireless technology to achieve this can be broadly categorized
into the four functional areas “short range wireless connectivity”, “long range
wireless connectivity”, “sensing with radio waves” and “wireless energy
transfer”. An overview is given in Figure 8.9.

The traditional small-cell scenario with typical cell size below 100 m
is considered as short-range wireless connectivity for mmW frequencies
(30 – 300 GHz). In contrast to previous generations of cellular systems,
emphasis on differentiated optimizations for smaller ranges is expected in 6G.
Short-range transceivers capable of operating in the upper mmW frequencies
will allow future communications systems to expand into new frequencies.
In addition to data rate, also traffic and connections per area (i.e., capacity
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Figure 8.9 Overview of the functions of mmW wireless technology.

and density) will generally benefit from access to these new frequencies.
Additionally, the increasing signal attenuation at higher frequencies gives the
opportunity to deploy dense networks of smaller cells. High directivity of the
transmissions with narrow beams allows to further optimize the utilization
of communication resources. Altogether, these properties will also provide
the means to transport data from sensors/displays/actors to the processing
and back and hence help facilitate the integration of services offered by local
compute nodes.

Communication links at distances beyond 100 m are considered as long-
range wireless connectivity for mmW frequencies. Traditional applications
include directional radio (point-to-point) links across a few kilometres, while
emerging scenarios might necessitate link distances of up to 1000 km. In
general, more available bandwidth for wireless x-haul (fixed/integrated) will
increase achievable and peak data rates and capacity. Additionally, the mmW
frequencies are expected to play an increasing role for wireless backhaul links
from and between moving entities like satellites, high-altitude platforms,
or swarm-networks, which will be integral for extending the global reach
(coverage) of cellular networks [85].

With respect to location accuracy and integrated sensing capabilities,
large signal bandwidth leads to better resolution of multipaths. The rapidly
steerable antennas with strong directivity, necessary at frequencies beyond
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100 GHz to overcome path loss, bring the benefit of increasing the spatial
resolution for localization purposes. And lastly, decreasing the wavelength
changes how radio waves interact with matter in the physical world. This can
be exploited for 3D mapping of the environment and for detecting human
gestures in a manufacturing domain.

EI systems will only become truly autonomous when energy is always
available everywhere and. Already today, energy harvesting from the envi-
ronment can complement the traditional wired charging of batteries.Wireless
energy transfer (at distances beyond a few millimetres) from infrastructure
to devices and among devices will become increasingly important in future.
Advances of mmW technology will pave the way towards ubiquitous wire-
less energy transfer, as the size of antenna arrays shrinks, and the number
of antenna elements grows inverse to the operating frequency. This opens
new possibilities to focus the emitted electromagnetic radiation in a single
direction with beam-/spot-forming algorithms.

These functional areas can also be addressed with optical communication
technology operating in the visible light spectrum, which will play a comple-
mentary role in the advancement of wireless communication networks.

8.10 Conclusion

The trend towards platform economies continues to disrupt traditional busi-
ness models. In future, platforms will not only serve humans but also
machines. The communication behaviour of such machines will change from
long range and broadband to short range and context-based, from perma-
nent data collection to focused and directed information exchange. This
will be facilitated by additional non-communication functions integrated in
future wireless technology and will impact broadly all manufacturing related
scenarios.
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Abstract

The AI ethics in industrial environments is a new field within applied
ethics, with notable dynamics but no well-established rules and no standard
overviews. It poses many more challenges than similar consumer and general
business applications, and the digital transformation of industrial sectors has
brought into the ethical picture even more considerations to address. This
relates to integrating AI and autonomous learning machines based on neural
networks, genetic algorithms, and agent architectures into manufacturing
processes.

This article presents the ethical challenges in industrial environments and
the implications of developing, implementing, and deploying AI technologies
and applications in industrial sectors in terms of complexity, energy demands,
and environmental and climate changes.

It also gives an overview of the ethical considerations concerning digitis-
ing industry and ways of addressing them, such as potential impacts of AI on
economic growth and productivity, workforce, digital divide, alignment with
trustworthiness, transparency, and fairness.
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Additionally, potential issues concerning the concentration of AI tech-
nology within only a few companies, human-machine relationships, and
behavioural and operational misconduct involving AI are examined.

Manufacturers, designers, owners, and operators of AI—as part of
autonomous industrial systems—can be held responsible if harm is caused.
Therefore, the need for accountability is also addressed, particularly related
to industrial applications with non-functional requirements such as safety,
security, reliability, and maintainability supporting the means of AI-based
technologies and applications to be auditable via an assessment either inter-
nally or by a third party. This requires new standards and certification
schemes that allow AI systems to be assessed objectively for compliance and
results to be repeatable and reproducible.

This article is based on work, findings, and many discussions within the
context of the ECSEL JU AI4DI, ArchitectECA2030 and AI4CSM projects.

Keywords: Artificial intelligence, ethics, digitising industry, industry- grade
AI, industrial internet of things, machine ethics, explainable AI, trustworthi-
ness, responsible AI, technology ethics.

9.1 Introduction

We all remember the frequent quotation of Isaac Asimov and his famous
Three Laws of Robotics (1942). First Law: A robot may not injure a human
being or, through inaction, allow a human being to be harmed. Second Law: A
robot must obey orders given by humans, except where such orders conflicts
with the First Law. Third Law: A robot must protest its own existence,
provided such protection does not conflicts with First and Second Law. These
three laws perfectly reflect the need for future use of AI not to harm human
beings. On the other side, the definition of AI proposed in the European
Commission’s Communication on AI [2][3][4][5] states that “Artificial intel-
ligence (AI) refers to systems that display intelligent behaviour by analysing
their environment and taking actions – with some degree of autonomy –
to achieve specific goals. AI- based systems can be purely software-based,
acting in the virtual world (e.g., voice assistants, image analysis software,
search engines, speech and face recognition systems), or AI can be embedded
in hardware devices (e.g., advanced robots, autonomous vehicles, drones or
Internet of Things (IoT) applications).”

In the context of the ECSEL JU AI4DI project under European Union’s
Horizon 2020 research and innovation programme [1], AI is defined as a
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machine’s ability to perform logical analysis, acquire knowledge, and adapt
to an industrial environment that varies over time or in context. These abilities
include the collective attributes of a machine (i.e., computer, robot, or intel-
ligent IoT device) to perform functions such as perception, understanding,
reason, prediction, learning, decision making and action.

Another definition [6] mentions that AI is an activity dedicated to creating
machine intelligence. Intelligence is a quality that allows an entity to function
appropriately and with insight and foresight in its environment.

The increased number of intelligent machines, products and services, (i.e.,
equipment, industrial IoT devices with embedded AI, etc.), based on machine
learning (ML), artificial neural networks (ANNs) and deep learning (DP),
deployed in industrial environments, require to open the discussion on ethical
principles and how these relate to AI.

AI is defined based on outcomes and actions [23]. The ethics of AI in
industrial environments are evolving due to discussions around industrial AI
trust, technical problems that focus on achieving the desired outcome for AI-
based technologies and applications in manufacturing sectors. This is a new
field within applied ethics and comes with notable dynamics, controversial
issues, a lack of standards and no common agreement on principles about
ethics.

Trust in an industrial AI system has multiple dimensions combining
system dependability characteristics (e.g., privacy, security, safety, reliability,
availability, resilience, connectability and maintainability) with human and
machine behaviour. There is a need for a greater understanding of how
individuals interact with machines and how machines/things interact with
other machines/things to extend the concept of trust.

Trust in industrial AI systems is a characteristic of human-to-machine and
machine-to-machine relationships formed with different industrial AI-based
systems. In industrial processes, a further understanding of how individuals
interact with AI-based machines and how these machines/things interact
with other machines/things is critical for building the industrial AI trust
concept. In many industrial processes, AI trust is developed by considering
the performance (e.g., accuracy, robustness, stability, speed, data quality, etc.)
of AI, the ML model, the operations (compliance, dependability, response to
uncertainty, monitoring, governance, etc.) of the industrial AI system and
the set of rules, guidelines, and standards (e.g., ethical, technical, etc.) in
the industrial workflow. The rules/guidelines related to, for example, trans-
parency, explainability, bias, and fairness apply to both the design of the
industrial AI system, how it is used and how its functions are explained in
the industrial process.
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Uncertainty and vulnerability are two of the core elements of AI trust.
In addressing industrial AI trust issues, industrial stakeholders must select
strategies that reduce uncertainty or decrease vulnerability, depending on the
context of the problems. Design for industrial AI trust requires evaluating the
operating assumptions and examining how those assumptions can function
to put some users of the AI system at risk. Understanding and designing AI
trust systems require an understanding of the rules of the AI system and the
functions of autonomous/cognitive elements.

From an industrial AI technology perspective, trust refers to trust mea-
surement capabilities. This requires the use of trust assessment approaches,
such as recommendation and reputation systems, which calculate the trust-
worthiness of one industrial AI system to match it against the need for trust
of another industrial AI system.

As industrial AI technologies are maturing and AI-based applications
are proliferating in different industrial sectors, new standards are demanded
that describe measurable and testable levels of transparency are required; in
this way the AI-based systems are objectively assessed for compliance to be
reliable, safe, trustworthy, and operate with integrity.

The developed economies understand the game-changing nature of AI
and have embraced different approaches to accelerate and control the devel-
opment of AI technologies and applications.

Industrial AI depends on addressing the trade-off between incorporating
the benefits and mitigating the potential disadvantages of AI by simulta-
neously avoiding the misuse and underuse of AI technologies in industrial
environments.

Embracing an ethical approach to industrial AI provides what is con-
sidered a twin benefit of using ethics to allow industrial organisations to
take advantage of AI’s value and anticipate, avoid, and minimise expensive
missteps and errors.

A framework of industrial AI principles is based on statements of the val-
ues or principles that guide the development and deployment of AI in society
and that have already been proposed by different multi-stakeholder organi-
sations and initiatives [22][23][24][25][26][27][28][29]. Asilomar principles
[26] provide the greatest number of such principles organised under three
issues: research, ethics and values, and longer-term issues. Regarding these
principles five topics emerge as key for AI ethics:

• Autonomy as the element to use for whether or not to delegate.
• Beneficence as related to doing only good and providing a benefit.
• Non-maleficence as related to causing no harm and damages.
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Figure 9.1 A framework for trustworthy industrial AI systems.

• Explainability as related to how the AI-based system does its work and
who is responsible for the way it works.

• Justice as related to promoting fairness, and prosperity, preserving
solidarity and avoiding unfairness, bias, and discrimination.

A framework for trustworthy industrial AI systems including the elements
and principles presented above is illustrated in Figure 9.1.

One key opportunity for the industrial sector in Europe to be competitive
is to ensure the take-up of AI technology across its industry. The development
of higher efficient electronic components and systems, circuits specifically
built to run AI operations (neuromorphic circuits), high-performance com-
puters, quantum technologies and technologies for mapping the human brain
accelerate the possible applications of AI-based technologies in industrial
sectors and urgently require addressing the issues of ethical challenges that
the AI brings.

9.2 Ethics and Responsible AI in Industrial Environments

Nowadays, AI is impacting many aspects of industrial activities. There is
a need to understand how AI should be designed to i) operate responsibly,
ii) meet stakeholders’ expectations and iii) applicable regulations and con-
cerns relating to reliability, privacy data leakages, information transparency,
explainability and ethical considerations [16].
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Addressing these ethical dilemmas and concerns when developing indus-
trial AI-based solutions strengthens a manufacturer’s credibility for deliver-
ing products and services and enhances an organisation’s reputation in the
marketplace. Nevertheless, this is not an easy task, as industrial applications
have much higher requirements (e.g., reliability, verifiability, safety, etc.) than
AI-based products designed for the consumer market.

Many industrial companies address the ethical and environmental con-
cerns around the responsible use of AI in corporate social responsibility
strategy to make socially significant decisions and consider using “ethical
algorithms” to reduce the risk of unethical behaviours.

There is no single definition for what responsible AI means, and organisa-
tions will usually develop their terminology and methodology. Nevertheless,
designing AI to operate responsibly means at its core following design
principles that allow AI systems to justify and be held responsible for their
decisions. In industrial environments, this ultimately comes down to allowing
human inspection of the functionality of AI algorithms and models. The
development of AI systems is complex, involving many sub-systems with
different ethical considerations, making it challenging to inspect and evaluate
such systems. The complexity arises from the fact that ethically compliant
sub-systems do not necessarily make the overall system ethically compliant.
The subsystems interact with each other and exchange feedback, which may
change conditions in the application’s environment, conditions that cannot
always be anticipated during development. This may be the case with AI
systems that continue to learn after deployment. Therefore, re-evaluation of
ethical compliance must be conducted regularly or with every change of the
application context, especially in AI systems with widespread or profound
ethical issues. Safety-critical systems, where industry regulation would make
the re-evaluation mandatory, can be such a case. A schematic representation
of the elements in the development process of AI systems is illustrated in
Figure 9.2.

In this context, it is essential to note that designing and developing
responsible AI is not a one-time process but rather entails continuous striving
to maintain responsible AI systems and keep up with technological advances
that may bring new ethical implications.

9.3 Requirements for Industry-Grade AI

Defining the requirements for industry-grade AI is crucial as advanced
machines and Industrial Internet of Things (IIoT) devices with enhanced AI
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Figure 9.2 Complexity of applicability of ethical considerations resulting from the interac-
tion of subsystems.

capabilities may operate in ways that were not envisaged when the AI-based
system was designed and put into operation.

The requirements for industry-grade AI technologies and applications
identified by the AI4DI project [1] are illustrated in Figure 9.3. A short

Figure 9.3 Requirements for industry-grade AI [1].
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explanation of these requirements is presented in the next paragraphs. Some
of these requirements are further addressed in specific sub-sections.

Explainable: Humans must comprehend the decision of AI systems to track
down failure and assess decisions, and the AI systems must either provide
enough information required to explain its actions and decisions or possibly
even explain the output itself (explainable AI).

Available: Industrial applications for AI will target mission-critical tasks
along the complete production line, and system outages will have a direct eco-
nomic impact. Industry-grade AI systems, therefore, need to fulfil high avail-
ability standards. In a second step, they should also perform autonomously
via online learning over their lifetime to avoid maintenance. Moreover, they
should also be quickly available in terms of integration into new applications
and process steps.

Trustworthy: When more and more AI-enabled devices become connected
through the IIoT, trustworthiness will become an indispensable requirement
for AI systems. It is essential that the identity of every AI system can
be verified, and that vulnerabilities and inconsistencies are immediately
reported.

Secure: Industry-grade AI must implement security measures to ensure
robustness against all types of attack vectors through different devices, work-
ers, operators, etc. This also includes securing the AI system by making it
robust against adversarial attacks and manipulated input data. The communi-
cation between edge computing devices needs to be secured with encryption
and authentication mechanisms. Security is very important, particularly when
we execute AI on the edge. Therefore, protecting embedded ML models
against attacks by safeguarding the integrity (fooling decision) and confi-
dentiality of the data is vital when IIoT systems are deployed in the field.
With AI, the overall attack surface is large since we are gathering algorithmic
attacks (such as adversarial examples) and physical attacks (side-channel and
fault injection analysis). To address these issues, it is important to check the
robustness of models, add cryptographic-based authentication schemes and
add secure boot-like technologies to enforce the trust of embedded AI systems
against malicious tampering.

Safe: AI systems that operate physically next to and collaboratively with
humans through robots or other machines must comply with current and
future safety standards to prevent accidents. Notably, the employed AI sys-
tems must be robust against implausible data and operate with extremely low
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latency to quickly react to unforeseen events. Likewise, AI for the control of
safety-critical processes must also comply with the latest safety standards.

Private: Industry-grade AI will operate on mission-critical personal data
from the manufacturer and customers and business-critical information (data
security, confidentiality, etc). This data must be kept confidential and pro-
tected from external access. This precludes external cloud storage and the
application of typical big data methods. Instead, information must be pro-
cessed locally at the edge and only leverage data available within privacy
limits (smart data).

Transparent: The state, actions, and decisions of an AI system must be
inspectable and understandable at any point in time. This will be supported
by digital twins that represent the complete system state at any point in time.
AI methods for data visualisation can further enhance transparency and make
the systems state easier to understand.

Fair: AI technologies that support or automate decision processes must
adhere to the same fairness and compliance standards as defined by the
industrial sector regulation.

Inclusive: AI systems need to include humans and existing systems in their
operations to avoid the formation of isolated non-AI capable sub-systems
within a process, production system or supply chain.

Collaborative: Industry-grade AI will not be concentrated on a single device
or system. Instead, many different AI-enabled sub-systems will be distributed
(distributed AI) across IoT nodes, embedded devices, and other edge devices
(AI-Born embedded systems). These devices need to self- organise and
collaborate to ensure coherent operation at the level of the whole system.
They also need to collaborate with humans physically (e.g., human-robot
collaboration) and by exchanging information (human-machine interfaces).

Integrative: Industry-grade AI systems must be open and flexible to ensure
that they can be integrated seamlessly into existing systems and processes.
This is a key prerequisite of establishing AI methods in the industry according
to a sustainable roadmap.

Reliable: Reliability and dependability (dependable AI) are key prerequisites
for AI systems that are put into continuous operation with short maintenance
time in mission-critical production environments. AI must not harm produc-
tivity by an unreliable operation that requires regular human intervention or
even causes system outages.
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Resilient: Industry-grade AI must remain stable even when other parts of the
process fail. In the future, they should even be able to detect the failure and
initiate measures for compensating it.

Accountable: Industry-grade AI that supports or even replaces human deci-
sions must be implemented to ensure that it can be made accountable for its
output (e.g., via the supplier of the AI system).

Verifiable: AI systems for industrial applications must fulfil the same stan-
dards as legacy systems and will be applied to safety-, mission-, and business-
critical tasks. This requires that Industry-grade AI systems can be validated
(to reach correct results), verified (verifiable AI) and certified (certifiable AI)
for the targeted applications.

9.4 Industrial AI Challenges

The industrial AI technologies are powered by complex programming and
algorithms run on high-performance energy-consuming computing units.
Hence, the AI technologies are affecting how we interact with the environ-
ment and the resources used to power the different AI-based solutions.

While AI has many positive impacts, the widespread use of AI solutions
in industrial environments can have indirect adverse and hidden effects that
can harm the environment.

In many cases, phrases like “the data is the new oil” are used to highlight
the digital transformation without considering that as for the oil, when data is
used excessively, it is polluting the environment.

Raw data has no value in itself. Instead, the value is created when
collected effectively and accurately, connected to other relevant data, done
on time, processed, and refined. When well refined, usable data immediately
becomes a decision-making tool – information – allowing companies to use
it in the manufacturing decision-making and process automation.

Processing the information requires advanced AI-based hardware accel-
erated devices, software, algorithms, model, storage, computing, and con-
nectivity capabilities that increase the complexity of the systems, i.e. use
more natural resources, energy, and pollute the environment and generate new
waste.

Large-scale deployment of AI could have both positive and negative
impacts on the environment. Positive impacts can improve the user expe-
rience and the durability of machines. Thanks to preventive maintenance,
better products can be made by adapting the production process to external
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situations. Negative impacts include increased complexity, use of natural
resources, pollution, waste, and energy consumption.

In the following paragraphs, these challenges are highlighted to present a
comprehensive overview of the trade-off that must be considered when devel-
oping AI-based IIoT and other types of systems in industrial environments.

9.4.1 Complexity

Ethical implications and challenges are present even in the simplest AI sys-
tems. In many cases, the more complex AI systems, the greater the challenges
associated with their unpredictability and lack of transparency.

Industrial AI-based solutions result from multidisciplinary cooperation,
and almost all AI-based systems are complex systems integrating IIoT
devices, hardware, software, models, algorithms, and platforms.

The robustness and performance of models and algorithms are strongly
dependent on their learning abilities; hence, improving learning ability per-
formance will increase complexity. For instance, in the case of deep neural
networks, widening or deepening the network will enhance the learning
ability and the performance of the overall AI-based solution, but in many
cases, it will also increase its complexity. The many internal hidden layers
will be more challenging to penetrate for the purpose of analysis, including
verification of ethical compliance.

In industrial environments, complex problems have multiple layers, each
of which has multiscale parameters and characteristics, with the different
layers correlated to each other. The AI-based industrial complex systems
consist of numerous elements/components with a spatiotemporal multiscale
structure between the system and elements/components scale due to the
collective effect of these factors.

The complexity of the AI-based systems in industrial environments is
in many cases determined by the difference between intelligent machines
and human thinking. As demonstrated in many AI applications, statistical
methods of ML, including the field of neural networks, vary in many forms
from biological concepts of understanding, thinking, decision-making or
learning.

9.4.2 Use of Natural Resources

Large-scale deployment of AI could have both positive and negative impacts
on the environment. AI is creating positive environmental impacts in many
applications but can negatively impact others where extensive use of natural
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resources has already damaged the environment. By increasing the demand
for natural resources to increase automation and yield, AI can accelerate
environmental degradation.

Data used in AI applications must be captured, stored, analysed, and
transferred to different locations, which requires significant amounts of pro-
cessing power. It is estimated that 175 zettabytes (ZB) worth of data will be
stored globally by 2025 [18], which means extensive use of natural resources
to address the need of energy, cooling, water, buildings etc.

AI will probably increase the demand for new materials needed for
batteries that power the devices based on AI algorithms to perform intelligent
functions on the manufacturing floor.

9.4.3 Pollution and Waste

AI is being used in applications to combat waste pollution. However, as more
companies across more industries begin to use AI, there is growing concern
that AI technologies will also extend the climate crisis.

AI and ML algorithms are training for longer and longer, using more and
more sensors/devices generating data and consuming more and more energy,
thus directly or indirectly increasing pollution by generating more and new
types of waste that can be detrimental to the environment.

The use of power-intensive GPUs, energy-inefficient algorithms, a large
amount of data to run ML training are all considered contributing to increased
carbon dioxide emissions.

In this context, researchers are proposing ways to monitor the carbon
footprint of AI algorithms and evaluate the pollution generated by AI appli-
cations. Code can be attached to the AI models and algorithms to track the
energy use of individual AI-based processing units. An online calculator
tool is used by [13] to give the raw carbon emissions produced and the
approximate offset carbon emissions (depending on the grid used by the cloud
provider).

9.4.4 Energy

AI requires extensive amounts of energy for manufacturing and training/
learning. This will increase the carbon footprint of manufacturing products
based on AI and the overall energy consumption across the entire lifetime of
a product that needs continuously retraining and learning.

Training AI algorithms is an energy-intensive process, and estimates hint
that the carbon footprint of training AI is as much as 284 tonnes of carbon
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dioxide equivalent, which represent five times the lifetime emissions of an
average personal vehicle [12][14].

In most AI-based solutions, the energy-inefficiency of AI algorithms
begins with the need to fine-tune the model for particular tasks, translate
from one language to another and perform many iterations until the expected
results and performance are obtained.

For AI-based technologies and applications, the solutions to energy con-
sumption issues are using renewables to power the computing capabilities
responsible for processing, storing, and training data, distributing the pro-
cessing and analytics at the edge, designing more energy-efficient algorithms,
software/hardware systems, and connectivity (e.g., cellular, wireless).

9.5 Ethical Considerations for Digitising Industry

Digital ethics offers a critical reflection about the changes in the industry and
manufacturing processes shaped by digital and AI technologies. The digital
divide extends from a technical phenomenon to broader ethical issues related
to free competition, economic monopolies, silos that can affect the industrial
environments.

Autonomous and intelligent AI-based systems have become more perva-
sive and designed to reduce human intervention in industrial processes and
accelerate automation.

In this context, new ethical considerations must be addressed, and topics
such as trustworthiness, fairness, transparency, accountability, explainability,
and control must be discussed to develop guidelines, standards, and embed-
ding norms in AI-based systems to support their governance in industrial
environments. The following paragraphs offer a short overview of these topics
and the challenges linked to AI-based systems.

9.5.1 AI Trustworthiness

Digital technologies in manufacturing are pervasive, and AI trustworthiness
is imperative for the manufacturing processes to work correctly. To provide
risk-free and reliable operation, intelligent machines and processes require
continuous supervising ML algorithms used to make decisions. The control
and supervision require essential time and resources, to the point that using
digital technologies could become very expensive. On the other hand, not
controlling the AI-based process may lead to severe risks for the safety
and security of the entire production line. AI trustworthiness is based on
technology robustness, bias, fairness, transparency and explainability.
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The “EU Ethics guidelines for trustworthy AI” [4] provides high- level
requirements/principles for trustworthy systems: Human agency and over-
sight (empowering human beings in order to make informed decisions;
keeping the human in the loop), technical robustness and safety (resilient,
reliable system functioning), privacy and data governance, transparency,
diversity, non-discrimination and fairness, societal and environmental well-
being and lastly, accountability (responsibility and accountability for AI
systems).

According to NIST, an AI application’s trustworthiness value is derived
from several variables such as accuracy, explainability, resiliency, safety,
reliability, objectivity, security, and accountability [18].

Several of these variables are addressed in the following sub-sections.

9.5.2 Bias and Fairness

Considering that more decisions are delegated to AI in industrial processes,
it is crucial to ensure that the decisions and findings are free from bias and
unfairness.

Biases prevent AI applications from making fair decisions in the same
way as biases affect humans, and they can reside in both the AI training data
and the algorithms, both of which are generated by humans.

Data sets can often contain hidden biases due to being incomplete and
not covering the whole ground; in other cases, data sets can originate
from sources outside the organisation, exhibiting slightly different ethical
values.

Developers may also unintentionally programme biases into AI systems,
although this is less often the case in industrial environments than in the
consumer market.

In many cases, it is impossible to know in the design phase what algo-
rithms based on neural networks are learning when they are trained with a
specific data set. In industrial processes, the selection of the training sets,
the test sets, and the verification and validation of the results to assess
the efficiency and fairness of different algorithms are part of accepting or
rejecting the use of the algorithms in the industrial process.

Fairness requires knowing why an AI-based automated process made a
particular decision and the mechanisms that may change the decision and
is thus connected to the AI models’ interpretability and transparency of the
training, design, development, and deployment processes with which the
models were created.
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The absence of fairness that results from the performance of an AI-based
industrial system is in most cases due to algorithmic bias generated by a
particular categorical distinction.

In this context, in industrial environments, it is critical to identify the root
cause for introducing bias in AI systems, if any, and how it can be prevented
throughout the lifecycle of the AI-based solution.

AI bias in industrial environments - whether in AI algorithms or train-
ing data - can promote distrust and generate distorted outcomes, which
decreases the potential of AI for the industry. Introducing AI-based solutions
in industrial sectors ensures that AI technologies strengthen human decision
making. The industry’s stakeholders aim to support scientific advancement
and standards that can minimise AI bias.

9.5.3 Transparency

Implementing trustworthy AI-based solutions in industrial environments is
closely related to some of the other elements presented in this section, such
as fairness, accountability, and transparency.

Transparency relates to the capability of an AI system to, always, be able
to provide a satisfactory explanation for its decisions, auditable either by an
in-house or an independent human authority assessment. In the case of failure
causing harm, it should be possible to ascertain why.

AI transparency must be addressed over the lifecycle development of an
AI-based solution from the concept, design, deployment, operation, main-
tenance, upgrade/update and disposal. In approaching AI transparency in
many cases, algorithmic transparency and algorithmic decision-making are
the starting point.

In industrial environments, several AI components can be based on black-
box solutions. To achieve AI transparency, the openness of the development
process must be considered when designing AI-based solutions to allow for
explainability concerning interpretability and trust in the AI-based systems.

9.5.4 Accountability

The assumption that human beings are the ultimate decision-makers is one of
the fundamental premises most laws and regulations rely on when attributing
responsibility. As AI-based autonomous devices become more advanced and
ubiquitous, that will increasingly be less true when the “decision-maker” is a
machine and not a person [8].
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In industrial processes using AI technologies and applications, the respon-
sibility for the AI’s action/inaction/malfunction is attributed to an actor that
is part of a business agreement, the owner, designer/developer, manufacturer,
operator of an AI technology or application.

As the autonomous systems develop and become more intelligent new
decisions can be made by the AI-based system, and the intelligent machines
hold a certain level of responsibility for their actions. A responsibility gap is
created when the behaviour of AI-based products deviates from the initial
programming of the developer/designer to become a product of its inter-
actions with its environment making the ascription of responsibility highly
complex and unclear [7].

9.5.5 Explainability

In industrial environments, ethical concerns may arise when inaccurate and
even incorrect predictions are reached related to either the product or the
process. To address these concerns, industrial AI developers need to be able
to explain how algorithms predict using various technical approaches and the
factors that impact the decisions.

The AI-based technology used in industrial processes must explain
WHAT it was designed to do, HOW it was designed to do such functions,
and WHY it was designed in that distinct way instead of some other way.

Ensuring that AI-based hardware, software, and algorithms do what are
intended to do and that there are no biases or unintended consequences must
be addressed through validation and evaluation of the AI-based solutions
during development by measuring the performance of an AI-based system
through implementation to detect bugs, biases, and incorrect assumptions.

AI-based industrial systems can miss essential facts about the envi-
ronment, and it is crucial to verify that these systems are operating as
intended., including whether the AI models accurately estimate what they
are supposed to.

AI explainability should be formulated for different systems, such as sens-
ing, perception, and decision-making. Assessment of industrial AI explain-
ability and explanations needs to be aligned with the industrial context,
benchmarking, and targeted use cases, applications, or stakeholders (e.g.,
developers, users, consumers, etc.). High-level requirements for AI explain-
ability need to be defined by industrial regulations or international standards.
They should be aligned with the definition of transparency and verifiability
for AI applications in various industrial contexts and at different cognition
levels.
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9.5.6 Control

Control is another matter that impacts trust, explicitly concerning how much
control to exercise over AI, ranging from complete human control to com-
plete AI autonomy. Balancing these two extremes is always possible, so the
question is rather what form of control can be exercised and how it can be
exercised without hampering the benefits of AI.

One approach is to build self-assessment capability into the AI system
before deployment to enable the system to take corrective actions during
operation, if necessary, even shutting itself down if harm is anticipated.

The idea to control AI-based technologies is to make ongoing self-
evaluations and to test an integral part of a system’s operation to diagnose
how the AI-based system performs and correct any errors.

Ethical data sets could be used to continuously monitor and check for
deviant behaviour, implementing an effective and observant response to
ethical behaviour deviations of the algorithms.

Another approach is to keep humans in the loop able to intervene and
override decisions that may cause harm.

9.5.7 Human-Machine Interaction and Manipulation of Behaviour

When developing human-machine relationships on the manufacturing floor,
it is challenging to prognosticate the psychological effects of forming
relationships with different intelligent machines.

Straightforward collaboration between humans and machines in industrial
environments requires the interactions to be intuitive, seamless, and unobtru-
sive. This must be reflected in the implementation of AI-based interfaces built
to control and manage these interactions.

Relationships with machines may affect human users’ mental and social
development and create barriers for humans in understanding the relation-
ships between machines.

The cooperation of mixed groups of machines and humans in automated
production lines can affect the performance of groups and the perception of
their efficiency.

As technology advances, AI algorithms used in industrial processes can
develop capabilities to manipulate human behaviour - to identify and exploit
human practices, weaknesses, and vulnerabilities. Algorithms can detect the
feelings of the humans involved in the production, including fear, disgust, joy,
and relaxation.
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In industrial environments, this concern is not related to AI taking over
but instead aims to raise awareness of the risks involved when human
decision- making has been tampered with. For example, a risk is present
if an AI machine or an IIoT smart device no longer operates efficiently
because this critical element in AI-powered machines has not been set as
a goal.

AI-based applications in industrial environments must consider a risk-
based approach and differentiate AI uses according to whether they create
an unacceptable risk, a high risk or a low risk. The risk of manipulating
behaviour is unacceptable if it poses a clear threat to the regular operation
of the manufacturing process, security, quality of the outcome and personal
safety involved.

9.5.8 Autonomous Industrial Systems

Advances in industrial automation systems and AI have brought autonomous
systems into the focus of digital ethics as intelligent machines that can adapt
to the environment are strongly interconnected with autonomy.

Machine autonomy in industrial processes is related to the absence of
human intervention. Autonomy is characterised by the ability of an AI-
based system to make decisions and justify its actions based on its sensing
capabilities to adapt to changes, which occur within the system itself, other
systems it interacts with, its operation environment, or in the given task.

Autonomous industrial systems can perceive their environment via sens-
ing perception capabilities, create a plan of action according to the context
or scenario-related constraints and execute the planned actions safely and
reliably using intelligent actuators.

The autonomous industrial systems have characteristics related to process
execution, adaptability, self-governance, self-contentedness, and the corre-
sponding abilities that can connect with non-functional requirements for the
AI-based system.

The non-functional requirements or capabilities of autonomous industrial
systems are interlinked with the system’s skill to perform different tasks.
The abilities needed to give the AI-based system the characteristics of an
autonomous industrial system differ from case to case and depend on the
context.

Autonomous systems must operate without the intervention or assistance
of human operators and within the requirements defined by the industrial
ethical framework.
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The applicability of ethical considerations needs to consider the various
aspects of inherent decision-making autonomy, mitigation in abnormal situa-
tions, and communication with other machines and with human operators.

A simplified high-level reference architecture for AI-based autonomous
systems in industrial environments is illustrated in Figure 9.4. The simplified
high-level reference architecture is used in the ECSEL AI4DI [1], Archi-
tectECA2030 [30], and AI4CSM [31] projects to provide an overview and
organise the AI-based systems and their functions.

Communication with the environment relies on sensors for observing the
environment and actuators for changing environmental conditions to achieve
the objectives. Communication and collaboration with humans and other
machines in the industrial environment provide information and feedback on
the performance and actions of the system. In abnormal situations, capabili-
ties for cognitive information processing allows the system to fall back to a
safe operating state or to hand over control to a human operator and take it
back when the situation is normal again.

These capabilities rely on mechanisms for self-regulation controlling the
various modules, including knowledge bases, and are constantly adapted

Figure 9.4 Reference architecture for AI-based autonomous systems in industrial
environments.
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through perception and regulation, learning and reasoning, planning, and plan
recognition.

As autonomous industrial systems assume more responsibility in indus-
trial processes in the circumstances previously overseen by human judgment,
it is compelling to consider the associated ethical implications. These reflec-
tions should include analysis of ethical issues from multiple perspectives,
including those of machines and intelligent IIoT devices’ designers, operators
that control the intelligent machines, and the machines themselves that need
to act with ethical correctness.

9.5.9 Machine Ethics

Debates about machine ethics are not new, nor are the arguments about
whether AI machines have obligations and rights as humans and animals do.
The topic has revived in recent years; questions surrounding AI accountability
and autonomy have begun to be addressed more rigorously. The question of
whether AI is responsible for its own decisions, actions and consequences, or
whether this responsibility falls to the humans that design, develop, operate
and assess AI can no longer be answered directly. Many interpretations and
nuances are involved in answering this question.

Machine ethics includes how humans design, build, use, and treat AI-
based machines, robots, IIoT intelligent devices and how the decision-making
process of these machines are respecting ethical principles defined for a
manufacturing facility, an industrial sector, a region, or a country.

When discussing machine ethics, the debate raises the question of how
to regulate autonomous and intelligent systems-related technologies legally
and the appropriate legal treatment of systems that deploy these technologies
[8]. What if AI machines (e.g., intelligent IoT devices, robots, etc.,) instead
of being considered people in a human sense, are put on the same legal level
as corporations? It is important to remark that corporations’ legal personhood
can currently shield the natural persons behind them from the implications of
the law [9].

As intelligent machines evolve into entities that can perceive, feel, think,
and act, with intelligence comparable with animals, new regulatory and legal
frameworks must be implemented to define their legal status.

9.5.10 Automation and Employment

While the concern related to AI- and automation-driven mass job losses has
been a topic of concern in recent years, changes in the inherent nature of
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work due to AI and automation in industrial environments will have a more
substantial impact than just job losses. New forms of employment and new
competencies will become the norm.

Rapid advances in AI and automation technologies can significantly
disrupt labour markets. AI technology generally increases productivity in
the industrial environment and, at the same time, diminish some of today’s
valuable employment opportunities.

The AI and automation increase and augments the productivity of some
workers, and the technologies most probably replace the work done by others
and likely transform all professions to some degree. The rise in automation
is accelerating and occurring in a period of increasing economic inequality,
fostering fears of mass technological unemployment and a reiterated call for
policy efforts to address the consequences of technological change [15].

The AI effect on labour relates to automation and transforming human
behaviour to assume more complex roles, departing from the physical work
that dominated the industrial era repetitive administrative functions to the
cognitive tasks that characterise an efficient and more productive industrial
landscape.

The automation and the use of AI in industrial manufacturing can drasti-
cally cut down the human workforce, which means that revenues go to fewer
persons as the wealth created by machines does not include the machines
themselves. Individuals who have ownership in industrial AI-driven compa-
nies make all the money. This can widen the wealth gap, where fewer and
fewer persons take a substantial portion of the economic surplus created by
machines.

In this context, the ethical dilemma is connected to the occupation of
humans that rely on their jobs in industry to generate income to sustain
themselves and their relatives and contribute to human society.

9.6 AI and the Future Digitising Industry

The AI-based autonomous machines in industrial environments could in
the future omit their traditional operating environments and increasingly
move into problem areas that have earlier been available to humans due to
their dynamic nature and complexity. During this transition, the intelligent
machines will not be able to avoid acquiring some of the humans’ limitations
(e.g., learning from experience as the basis of flexible behaviour, experience
as an accumulation of errors, etc.).
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The development requires identifying who is responsible for the actions
of machines over which humans could not have adequate control and
determine ways to address the responsibility gap in moral practice and
legislation [7].

9.7 Ethical Guidelines for AI in Industrial Environments

AI is increasingly impacting all industrial sectors and triggered many indus-
trial groupings and professional bodies to provide several sets of ethical
principles for AI with new ethical guidelines emerging from the British
Standards Institute and the IEEE Standards Association.

The IEEE focuses on researchers’ need to operate with a ’safety mindset’
to pre-empt unintended or unanticipated behaviours and suggested that social
and moral norms need to be considered in the design of AI technologies and
applications.

The proliferation of AI-based solutions for industrial processes raises
the concern that AI-related degree programmes fail to equip designers with
appropriate knowledge of ethics. Related to the status of AI-based systems,
IEEE [8] claims that AI should not be granted the status of “personhood”, and
the existing and future laws should not practically give AI legal autonomy.

As a result of globally shared needs and concerns, the industry-
driven Ethics Certification Program for Autonomous and Intelligent Systems
(ECPAIS) program was launched by IEEE [20]. The program’s goal is to
advance transparency, accountability, and reduction in algorithmic bias in
autonomous and intelligent systems by setting out five core principles to
consider in the design and implementation of AI and ethics: adherence to
existing human rights frameworks, improving human wellbeing, ostensibly
to ensure accountable and responsible design, transparent technology, and
the ability to track misuse.

Another significant initiative refers to the OECD principles on Artificial
Intelligence promoting innovative and trustworthy AI, respecting human
rights and democratic values. The principles were adopted in May 2019 by
OECD member countries when they approved the OECD Council Recom-
mendation on Artificial Intelligence [21].

9.8 Recommendations for Ethical AI in Industrial
Environments

Based on the experience presented in [14] when proposing an AI model that
is intended to be retrained for downstream use, such as retraining on a new
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domain or fine-tuning on a new task, the designers should inform training
time and computational resources required, as well as model sensitivity
to hyperparameters. This form of reporting and transparency can enable
direct comparison across models, allowing subsequent users of the AI-based
models to accurately assess whether the required computational resources are
compatible with their setting.

The development of an industrial AI framework to enhance the explain-
ability of AI systems is critical for all autonomous system and especially
the ones that make socially significant decisions. Key to such a framework
is the ability off industrial stakeholders to acquire a factual, direct, and
clear explanation of the decision-making process, in the event of unwanted
consequences. The specific issues addressed by different industrial sec-
tors require the adaptation and extension of the framework to different
industries.

For the evaluation of the performance of AI-based solutions for indus-
trial applications, it is recommended to develop standardised benchmark
tools, hardware-independent measurement techniques of training time (e.g.,
gigaflops required to convergence), and standard measurements of model
sensitivity to data and hyperparameters (e.g., variance concerning hyperpa-
rameters searched).

In this context it is recommended to develop metrics for the trustworthi-
ness of industrial AI products and services, to be used across industrial sec-
tors. These metrics should serve as the basis for an evaluation framework that
enables a user-driven benchmarking of all marketed industrial AI offerings.

The promotion of an industrial AI ethical framework must incentivise
the inclusion of technical, ethical, legal, and social considerations in AI
research projects and stimulate new concepts for including ethical principles
into AI industrial technological developments and support the co-creation of
industrial policies, standards, best practices, and rules.

AI transparency in industrial environments should be addressed from
the AI system’s perspective and not only from individual algorithms or
components viewpoint.

AI transparency must be considered and applied concept to be interpreted
in a particular context, mitigated by knowledge, information asymmetries,
model-related explainability, and a set of competing interests (e.g., tech-
nological, economic). Consequently, AI transparency balances interests in
industrial manufacturing processes, demanding a multidisciplinary approach
that needs to be adequately addressed.
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It is recommended to advance further research on computationally effi-
cient AI algorithms, hardware, software that significantly reduce the energy
consumption of AI-based solutions.

Industrial stakeholders should develop new AI technologies that advance
trustworthy industrial AI to increase economic output, manufacturing
efficiency, and productivity; protect natural environments; reduce emissions;
and revitalise inclusive growth, sustainable development, and well-being.

They should create strategies for implementing trustworthy industrial
AI across industrial sectors throughout the AI system life cycle. These
include autonomy, beneficence, non-discrimination, non-bias, fairness, non-
maleficence, diversity, explainability, data protection, justice, and internation-
ally recognised labour rights.

They should implement mechanisms and safeguards, the capacity for
human decisions to supervise AI-based systems.

In the following years, research and development should focus on the
design of robust, secure, and safe industrial AI technologies throughout the
entire life cycle in all conditions (e.g., normal use, foreseeable use or misuse,
and other adverse conditions) to function appropriately and not pose any
unreasonable safety risk.

The issue of industrial AI traceability should be addressed by providing
mechanisms to ensure traceability (e.g., concerning datasets, processes and
decisions made during the AI system lifecycle) to enable an analysis of the
industrial AI system’s outcomes and responses to inquiry appropriate to the
industrial context.

Industrial AI stakeholders should commit to transparency and responsible
disclosure regarding industrial AI systems, provide meaningful information
appropriate to the industrial context to support the understanding of AI
systems, make other stakeholders aware of their interactions with industrial
AI systems, and understand the outcome of these systems.

Stakeholders operating in different industrial sectors should continuously
develop and implement a systematic risk management approach to each phase
of the industrial AI system lifecycle to address risks related to industrial AI
systems.

Stakeholders designing, developing, and deploying industrial AI systems
should be responsible and accountable for the proper functioning these sys-
tems and should respect the industry principles based on their roles, the
industrial context, and consistent with the sector regulations and applicable
laws.
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Industrial actors should consider a long-term investment in research,
development, and interdisciplinary activities to stimulate trustworthy AI
innovation that focuses on challenging technical issues and AI-related social,
legal, and ethical implications and policy issues.

In this context, it is highly recommended to foster and strengthen an
interactive and collaborative European ecosystem for trustworthy industrial
AI and provide mechanisms for sharing AI knowledge across industrial
sectors to exchange datasets, tools, and toolchains to support the safe, fair,
legal, and ethical sharing of data.

9.9 Conclusion

Digitising industry processes integrate AI-based solutions into manufacturing
using autonomous learning machines based on many complex AI technolo-
gies and architectures. The digital transformation of industrial sectors thus
creates new situations that call for new ethical considerations to be addressed.

It was provided a comprehensive overview of these considerations, chal-
lenges and trade-offs linked to developing AI-based intelligent stand- alone
systems, IIoT systems in industrial environments as a basis for developing
guidelines, standards, and norms to support their governance in industrial
environments.

One such challenge relates to the question of who is responsible for the
actions of an AI system?

In established industrial environments, the responsibility is attributed
to a human actor, such as the owner, developer, manufacturer, or operator.
However, as autonomous and learning AI-based systems become more per-
vasive and designed to reduce human intervention in industrial processes and
accelerate automation, this may no longer be the case.

The manufacturer or operator is not always able to predict future machine
behaviour, and thus in specific cases cannot be held responsible. This calls
for new regulations to be in place to support decisions related to who is
accountable or faces a responsibility gap that traditional concepts cannot
bridge.

This article pases awareness of diverse and complex ethical concerns
arising from the deployment of AI in industrial environments: from the
degradation of the environment to job losses due to automation. These
concerns may differ in interpretation, focus, and weight within various
industries and organisations, mainly because ethical terminology, principles,
and approaches – although necessarily aligned to society’s common and
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recognised values – will vary to adapt to the ecosystem in each industry or
organisation. Consequently, no one solution can mitigate all concerns, so this
article aims to spark new topics for further research.

Digitising industry processes integrate into the manufacturing processes
AI-based solutions using autonomous learning machines based on neural net-
works, genetic algorithms, and agent architectures. The digital transformation
of industrial sectors creates a new situation.
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Abstract

The digital transformation of industrial sectors is highly dynamic, and stan-
dardisation plays an essential role in achieving the objectives set for this
transformation. In this context, AI standardisation efforts and industry AI
efforts are intertwined. Industrial AI applications rely on standardisation to
build and sustain trust in industrial AI. Conversely, standardisation relies on
industrial AI applications to play an important role in forming emerging AI
standards. This article provides an overview of the role of AI standardisation
in digitising industry and the related objectives, while presenting several
requirements and challenges impacting standardisation. Furthermore, it sum-
marises the AI standards landscape and activities within Standards Devel-
opment Organisations (SDOs), outlines industrial stakeholders’ approaches,
and provides recommendations for an AI standardisation roadmap (in which
the industry should focus on AI standards work). Its concluding remarks
relate to AI standardisation activities, priorities in industrial environments,
and certification efforts to conceptualise new approaches to conformance and
acceptance criteria.
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10.1 Introduction

The development of AI technologies and applications for industrial environ-
ments requires standards that create common building blocks establishing
foundations for product differentiation, technological innovation, and frame-
works for industrial stakeholders in enabling reliable, responsible, safe, and
secure AI solutions.

In North America, organisations such as NIST [2] have actively supported
the development of AI standards and stated, “AI standards that articulate
requirements, specifications, guidelines, or characteristics can help to ensure
that AI technologies and systems meet critical objectives for functional-
ity, interoperability, and trustworthiness - and that they perform accurately,
reliably, and safely.”

NIST developed a roadmap on AI standards to guide the development of
technical standards and related tools to support reliable, robust, and trust-
worthy systems that use AI technologies. NIST focus areas for standards
development are outlined in Figure 10.1. While progressing in developing the
roadmap, the industry responded with submissions, some of which empha-
sised the importance of the standards being created by ISO/IEC JTC 1/SC
42. The roadmap [22]:

• Identifies areas of strategic focus for standardisation (Figure 10.1).
• Outlines the importance of co-ordination concerning standards-setting.
• Calls for strategic engagement with international parties to ’advance AI.

In Europe, the overall strategy on AI proposes an ecosystem of excellence
and trust for AI [12]. The concept of an ecosystem of excellence in Europe
refers to measures supporting research, fostering collaboration between the
Member States, and increasing investment into AI development and deploy-
ment [15]. The trust ecosystem is based on EU values and fundamental rights
and foresees robust requirements that would give citizens the confidence
to embrace AI-based solutions while encouraging businesses to develop
them [14]. The European approach for AI “aims to promote Europe’s inno-
vation capacity in AI while supporting the development and uptake of ethical
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Figure 10.1 NIST focus areas for standards development.

and trustworthy AI across the EU economy. AI should work for people and
be a force for good in society” [12][13].

This article presents several issues related to AI standardisation drawn
from the experience gained in the ECSEL JU AI4DI [1], ArchitectECA2030
[24] and AI4CSM [25] projects that addresses the challenges of digitising
industry, automation of vehicles and the integration of AI-based compo-
nents, techniques, methods, and applications to various industrial sectors. The
projects provide new reference architecture concepts, methodologies, new
silicon-born-AI components supporting the development of AI- born embed-
ded systems and integrating AI-born industrial systems, design languages,
application generators, design automation and respective standardisation to
accelerate the transfer of these technologies into industrial applications.

10.2 International Principles

The Organization for Economic Co-operation and Development (OECD) [4]
provided a set of principles and encouraged governments to “promote the
development of multi-stakeholder, consensus-driven global technical stan-
dards for interoperable and trustworthy AI” [4]. The principles proposed
by OECD incorporate actionable measures to promote a framework for
the “responsible stewardship of trustworthy AI”, including design, develop-
ment, and deployment of AI internationally. OECD’s high-level value-based
principles are summarised below:

• Inclusive growth, sustainable development, and well-being.
• Human-centred values and fairness require that AI-based systems are
designed to respect the rule of law, defined values and diversity, and
include appropriate safeguards, allowing human intervention where
necessary.
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• Transparency and responsible AI-based systems ensure that users under-
stand AI-based outcomes and can challenge them.

• Robustness, security, and safety are embedded in AI-based systems
throughout their life cycles by continually assessing and managing
potential risks related to AI systems, including privacy, digital security,
safety, and bias. AI actors should assure traceability concerning datasets,
processes and decisions made during the AI system lifecycle to facilitate
an analysis of the AI system’s outcomes and responses to inquiry,
suitable to the context and consistent with state-of-the-art.

• Accountability applies to organisations and individuals developing,
deploying, or operating AI systems for the proper functioning of these
systems in line with the above principles, based on their roles, the
context, and consistent with the state-of-art.

The implementation of these principles is reflected in the developments of
AI technology, regulations/legislation, and standards. The development of AI
standards is done through SDOs that function mainly on a consensus basis.

The World Economic Forum (WEF) has strengthened the activities
around the governance of AI, focusing on developing high-level principles-
based guidance, frameworks, and workbooks to support decision-making and
based on these activities, create partnerships with different national govern-
ments. These partnerships represent an additional valuable role in developing
international standards to support the design, development, deployment, and
evaluation of responsible AI systems, including within industrial sectors. The
forum supports the organisation in implementing the practices and measures
suggested in a Model Framework [5] and sharing experiences to inspire other
organisations adopting AI to do so in a similarly responsible manner.

10.3 Role of AI Standardisation in Digitising Industry

AI, alongside IIoT, edge computing and intelligent connectivity, has become
a core technology across various industries and one of the driving forces
in digital transformation, and AI standardisation plays an essential role in
shaping its future. AI standards are critical for building trust and confidence
in AI technologies.

Standardisation activities ensure industry collaboration on the develop-
ment of new AI standards, best practices, use cases and terminologies for
scaling AI and enabling industries to achieve their full potential.

AI standardisation initiatives bring to industrial stakeholders com-
mon vocabularies, agreements on taxonomies and definitions, and new
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pre-normative activities to address autonomous and semi-autonomous indus-
trial systems.

AI standards form the basis for AI technologies and provide reference
points for assessing AI systems’ computational approaches and characteris-
tics and studying technologies used by those systems, such as ML algorithms
and reasoning, as well as their properties and features.

By analysing existing specialised industrial AI systems, stakeholders
involved in standardisation processes can understand and identify the AI
systems’ underlying computational approaches, architectures, and character-
istics.

Using representative use cases collected across application domains as
a reference for emerging standards ensures that the standardisation process
will reflect the contexts in which AI is being used and thus help to define AI
architectural approaches.

Standardisation is expected to be a prominent driving force in the adop-
tion and integration of AI in industrial applications. It is also expected to
play a supportive role in mitigating some of the concerns and challenges
brought by AI deployments in industrial environments. Moreover, the most
essential requirements for AI standardisation can be naturally derived from
these challenges.

10.4 Challenges Associated with AI Deployments
in Industrial Environments

The challenges of AI deployments in industrial environments are associated
with complexity, data acquisition and storage, training, testing, compliance
requirements, high cost of failures/changes, and other variables used in the
optimisation processes.

The sensors and IIoT-based systems that collect data capture many param-
eters from various processes, and inevitably also capture noisy information.
As such, extensive storage, and computing resources for analytics capabilities
are required.

To properly train AI-based systems, adequately large amounts of repre-
sentative data, including information on expected and unexpected failures
and other events, must be collected. This is a challenging task, as the data
is available in different systems or platforms, provided in different formats
and, in many cases, too scarce to be used for training purposes.

Testing AI-based systems on real-world production lines, manufac-
turing warehouses and other industrial facilities requires extensive time
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and resources. For AI applications with a low technology readiness level
(TRL), simulation environments are used for training and testing before
deployment.

AI-based systems require adaptions in industrial manufacturing pro-
cesses, and the cost of changes and failures at large-scale industrial facilities
is very high.

Testing industrial AI applications is often required for specific deploy-
ment contexts in various industrial environments. Testing and certification
bodies must depend on and increasingly trust more simulation or virtual
testing to perform a conformity assessment (in addition to field testing) of
industrial AI applications. AI verification, validation and testing (VV&T)
approaches become essential for the safety demonstration of AI features in
industrial applications.

Furthermore, since industrial environments must adhere to industry com-
pliance requirements, changes to industrial processes often trigger extensive
re-assessment of compliance, which implies a need for comprehensive
VV&T of the AI-based systems and automation affected by the changes.

Manufacturing facilities and industrial systems are highly complex, often
providing hundreds of parameters and inputs to AI and ML optimising algo-
rithms. This is an enormous challenge for managing the complex AI solution
space, both in terms of inference and training and learning.

Considering these challenges, the trustworthiness of organisations, prod-
ucts and services is critical in AI-based industrial environments. Moreover,
this need for trust means that new standards for design, manufacturing and
business practices must be implemented so that industrial environments can
evolve and promote industry innovation and deliver reliable, responsible,
safe, and secure industrial AI solutions.

Finally, the requirements and challenges of AI deployments in industrial
environments must be captured in the AI standards as part of a pathway to cer-
tification for AI-based systems, products, and services. In this way, any gaps
that arise between technical and ethical risks and between standardisation and
certification efforts can be identified and closed.

10.5 AI Standardisation Needs in Industrial Automation

AI standardisation has a different focus in industrial applications than in
consumer AI applications in terms of data quality and privacy, information
content and the impact of AI on various stakeholders; therefore, it also has
different needs.
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In industrial AI, standardisation needs are identified and driven by use
cases that are representative for various industrial sectors.

The challenge with AI standardisation lies in harmonising standardisation
efforts across industrial sectors and applications to create a common set of
AI requirements and standardisation needs. In this context, a differentiation
needs to be made explicit between horizontal (related to generic issues across
several industrial areas) and vertical (related to more specific issues relevant
to a given sector or application area) standardisation tasks.

To facilitate these efforts, it makes sense to categorise the many complex
AI topics based on their relevance and use, as illustrated in Figure 10.2. The
AI topics are placed in a three-layer structure with generic topics on the
top, horizontal topics in the middle and relevant AI4DI application areas at
the bottom [1]. The generic topics form the basis for discussions on AI and
include terminology, classification, methods, datasets and generic use-cases.
The horizontal topics are common across industries and must be considered
for the development of guidelines, standards, regulations, and certification
to support AI-based systems governance in industrial environments. Ethical
aspects and associated topics such as fairness, transparency, accountability,
explainability, and control are part of the horizontal topics. AI is relevant for
almost all industry sectors, and the application areas are very diverse, such
as automotive, semiconductor, industrial machinery, food and beverages and
transportation. The relevant industrial application area topics are found in the
AI systems, components of AI systems and services, and manufacturing and
support processes.

Figure 10.2 Three-layer AI topics structure: generic, horizontal, and relevant industrial
application areas.
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Finally, to address standardisation gaps and future standardisation activ-
ities, an interdisciplinary exchange between expert groups is needed. This
exchange should focus on the role of AI in industrial environments, e.g., in
the context of IIoT, functional and operational security and safety, given the
complexity of AI technologies and applications.

10.6 Standardisation of Security and Safety in AI Systems

As industrial AI and ML become more and more integrated in critical sys-
tems, responsible for supporting or making decisions that can impact the
security and safety of people, assets, and the environment, new challenges
associated with the standardisation of security and safety in AI systems need
to be addressed.

Existing safety standards in various industrial sectors are not compatible
with AI methods, such as machine learning and computer vision. As such,
they do not include criteria for the security and safety of AI systems or
means of verification for compliance. Thus, either existing standards need
to be adapted or new safety standards must emerge, or both.

Safety and security are intertwined when it comes to autonomous systems
and IIoT devices, with differential approaches to address attacks against AI-
based systems and services. The end-to-end and by-design principles applied
to IIoT systems need to be applied to AI technologies and applications. The
by-design model may be most appropriate for addressing additional concerns
related to AI, such as security, safety, privacy, and inclusion.

One main challenge is to guarantee that the capabilities of AI systems,
such as autonomous industrial systems and driverless vehicles, are tested
before being used and monitored during operation. Physical and virtual
safety validation ensures the correct and safe operation of a system in an
environment. It plays a critical role in AI-based autonomous systems.

Security concerns include the protection of information within AI-
based systems from unauthorised tampering, especially considering the dif-
ferent types of users (e.g., persons, systems, software agents, machines,
IIoT devices) and levels of permission they hold. The security of AI-
based systems, models, and algorithms is characterised by confidentiality,
integrity, non-repudiation, accountability, and authenticity. When breached,
the authenticity of data used in ML can cause significant deviations in an
industrial system’s outputs. In this way, accountability and responsibility
are challenging to achieve for complex industrial AI-based systems if the
dependencies between the system’s components are not adequately identified.
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AI systems could expose different kinds of security weaknesses throughout
their use. However, providing security guidelines and standards based end-to-
end security, including addressing the quality of data and trained ML models,
could improve the trustworthiness of AI solutions.

Safety in industrial environments is related to the use of AI-based sys-
tems and associated risks. Significant safety risks in industrial environments
include ML system accidents, which can be defined as unintended or harmful
behaviour that may emerge from the inadequate or faulty design or imple-
mentation of AI-based systems. Safety is also tightly linked to robustness,
since robustness guarantees the proper operation of an AI-based system in
each industrial context/environment.

The complexity of AI autonomous safety-critical systems often averts
the use of formal verification, and real-world testing can be too complicated
and lengthy during development. Simulation-based techniques are developed
that consider the system under test as a black box operating in a simulated
environment. Safety validation missions include the following:

• Find disturbances in the environment that cause the system to fail
(falsification) by discovering previously unknown failure modes and
determining regions where the system can operate safely.

• Locate the most-likely failure, based on a probabilistic model of the
disturbances.

• Assess the probability of system failures.

Autonomous systems deployed in industrial environments or autonomous
vehicles require inherent safety by design that starts with the design speci-
fications, implementation strategy, and virtual validation for providing fail-
operational properties and minimising residual risk by increasing the safety
margin. Fail-operational safety and redundancy are achieved using redundant
sensors and AI-based algorithms for safety-critical functions [23].

AI safety standards are critical for industrial processes, safety-critical
applications, and new AI-based applications involving autonomy. AI-based
autonomous systems are also evolving throughout their life cycles, learn-
ing new behaviours, and introducing unknown safety risks that need to be
addressed with standard safety measures.

As a concluding remark, the first step in addressing this challenge is to
review the legal and regulatory frameworks for security and safety-critical
tasks in the industrial sectors. This will help to assess how AI will impact
existing standards, as well as identify gaps. It is expected that most safety
standards can be extended to cover AI methods fully or partially, until they
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become too complex and difficult to use. At that point, new AI security
and safety standards will need to be developed. Certification procedures will
also need to be adapted. Therefore, it is important that existing and new
standards are developed with the involvement of a large group of stakeholders
to understand AI technology as well as industrial-specific use cases and
integration at the systems level of industrial environments.

10.7 The Global AI Standards Landscape
and Standardisation Activities

The development of AI standards in industrial environments requires coordi-
nated efforts led by the industry and implemented by international standards
bodies to support the global governance and alignment of AI development in
the industrial sectors.

The international standards bodies have the institutional capacity to
manage expert consensus and then publish AI standards across industrial
sectors.

Standards shape the development and deployment of AI systems through
product/service requirements and specifications for reliability, explainability,
robustness, and fail-safe, fail-operational design. They influence the broader
setting in which AI is researched, developed, and deployed through process
and product requirements/specifications. The creation, dissemination, and
enforcement of AI standards can build trust among industrial stakeholders,
researchers, companies, and users.

AI standards are developed by international standards bodies which have
the experience to monitor and enforce standards globally or other organisa-
tions that develop standards sponsored by different stakeholders. Examples
of such development are the AI open-source software standards (e.g., soft-
ware libraries TensorFlow, PyTorch, AI datasets, models, etc.,) developed
by industry consortia, organisational sponsors, and individual contributors,
which convert to standards across the industry over time [8]. Open-source
AI enhances transparency by opening the AI black boxes and accelerating
the deployment of new AI technologies, but it can bring unknown risks or
negative consequences for industrial sectors.

Figure 10.3 illustrates an industrial AI standards system framework that
includes the elements required and partly addressed in the existing standards
and future standardisation activities.

AI national strategies confirm that several countries draft national stan-
dards and use the activities at the national level to leverage with the
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involvement in international technical standards. Considering the market
structure in the AI industry, the national standardisation bodies are encour-
aged and motivated to ensure that the international standards align as closely
as possible to the national standards.

The following paragraphs give an overview of the AI standardisation
activities covered by international standards bodies.

10.7.1 CEN-CENELEC

CEN and CENELEC continuously analyse whether relevant standards are
already being produced at the international level and if European standards
covering specific European needs, must be produced.

In the area of AI, CEN -CENELEC Focus Group on Artificial Intelligence
has published the “Road Map on Artificial Intelligence (AI)” [10][11] that
provided an overview of existing standardisation activities in IEEE, ETSI,
ISO/IEC, ITU-T and CEN-CENELEC.

The Focus Group on Artificial Intelligence addresses AI standardisation
in Europe through a bottom-up approach (e.g., ISO/IEC JTC 1 SC 42)
and a top-down approach (concentrating on a long-term plan for European
standardisation). The Focus Group identified the following seven themes that
are addressed for European standardisation:

• Mapping of current European and international standardisation initia-
tives on AI and identifying specific standardisation needs

• Promoting further European participation in the ISO and IEC TCs
• Formulating recommendations on the best way to address AI Ethics in
the European context

• Identifying the CEN and CENELEC TCs that AI will impact
• Monitoring potential changes in European legislation
• Liaising with the European High-Level Expert Group on AI and identify
synergies

• Acting as the focal point for the CEN and CENELEC TCs

10.7.2 ETSI

The ETSI community focuses on AI as a “tool” in architectural mod-
els, enhancing information/data models, redesigning operational processes,
increasing solution interoperability, and data management for new ICT
standards [9].

The ETSI Industry Specification Group (ISG) on Securing Artificial
Intelligence (SAI) focuses on three areas: AI to enhance security, mitigate
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against attacks that leverage AI, and secure AI itself from attack. ISG SAI
cooperates with ENISA and have join activities. ISG SAI outputs are focusing
on the following topics:

• The problem statement that guides the work of the group.
• AI threat ontology to align terminology.
• Data supply chain addressing data issues and risks for training AI.
• Mitigation strategy, with guidance to mitigate the impact of AI threats.
• Security testing of AI.
• Hardware in securing artificial intelligence.

Several other ETSI ISGs are working in the domain of ML for defining the
specification of functionalities that are used in technology. A list of these
ISGs is provided below:

• ISG on Experiential Networked Intelligence (ISG ENI) develops stan-
dards that use AI mechanisms to manage and orchestrate the network.
The work supports making the deployment of future 5G networks more
intelligent and efficient.

• ISG ZSM (Zero-touch network and Service Management) defines the
ML enablers in end-to-end service and network management.

• ISG F5G on Fixed 5G defines the application of AI in the evolution
towards “fibre to everything” of the fixed network.

• ISG CIM (Context Information Management) publishes specifications
for a data interchange format (ETSI CIM GS 009 V1.2.1 NGSI-LD
API) and a flexible information model (ETSI CIM GS 006 V1.1.1),
which support the exchange of information from, e.g., knowledge graphs
and can facilitate modelling of the real world, including relationships
between entities.

• ISG ENI (Experiential Networked Intelligence) defines ML function-
ality that can be used/reused throughout the network, cloud, and end
devices.

10.7.3 IEC

IEC addresses the AI through the standardisation evaluation group SEG 10,
“Ethics in Autonomous and Artificial Intelligence Applications” which iden-
tifies ethical issues and societal concerns related to IEC technical activities
and develops guidelines on ethical aspects related to autonomous and/or AI
applications [16]. IEC’s SEG 10 is consisting of two working groups:

• Autonomous and AI Applications Societal and Ethical Foundations
(WG 1)
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• Autonomous and AI Applications Specific Ethical Requirements
(WG 2).

SEG 10 outputs are focusing on the following topics:

• Identify relevant ethical issues and societal concerns to IEC technical
activities.

• Formulate appropriate recommendations to Standardization Manage-
ment Board (SMB).

• Develop guidelines applicable for IEC committees on ethical aspects
related to autonomous and/or AI applications.

• Assure work consistency across IEC committees and foster cooperation
with JTC 1/SC 42.

• Analyse any change needed in the IEC use case template to address
ethical issues and societal concerns.

10.7.4 ISO

ISO/IEC JTC 1, a joint technical committee formed between IEC and ISO on
IT issues, addresses the activities related to AI terminology.

The principles and rules for drafting documents used by ISO and JTC1
[21] imply specific classifications and styles of normative language that
include:

• A requirement, defined as an objectively verifiable criterion that must be
met without deviation to claim conformance to the containing standards.

• A recommendation, that suggests a possible choice or course of action
without excluding others.

• A permission, which conveys consent or liberty to do something. JTC 1
issued a series of International Standards on AI terminology:

◦ ISO/IEC 2382-28:1995, Information technology – Vocabulary –
Part 28: Artificial intelligence – Basic concepts and expert systems.

◦ ISO/IEC 2382-29:1999, Information technology – Vocabulary –
Part 29: Artificial intelligence – Speech recognition and synthesis.

◦ ISO/IEC 2382-31:1997, Information technology – Vocabulary –
Part 31: Artificial intelligence – Machine learning.

◦ ISO/IEC 2382-34:1999, Information technology – Vocabulary –
Part 34: Artificial intelligence – Neural networks.

All these parts are merged into the common JTC 1 standard for IT vocabulary:
ISO/IEC 2382:2015 [17].
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Standardisation in AI is covered by ISO/IEC JTC 1/SC 42-Artificial
Intelligence, which focuses on JTC 1’s standardisation program on AI
and provides guidance to JTC 1, IEC, and ISO committees developing
AI applications. ISO/IEC JTC 1/SC 42 topics within the work programme
include:

• SC 42/WG 1 - Foundational AI standards.

◦ ISO/IEC 22989: Artificial Intelligence Concepts and Terminology.
◦ ISO/IEC 23053: Framework for Artificial Intelligence Systems
Using Machine Learning.

• SC 42/WG 2 – Big data ecosystem.

◦ ISO/IEC 20547-1: Information technology - Big data reference
architecture – Part 1: Framework and application process.

◦ ISO/IEC 20547-3: Information technology - Big data reference
architecture - Part 3: Reference architecture.

◦ ISO/IEC 24688: Information technology – Artificial Intelligence –
Process management framework for big data analytics.

• SC 42/WG 3 – AI Trustworthiness.

◦ ISO/IEC 24027: Information technology - Artificial Intelligence
(AI) - Bias in AI systems and AI aided decision making.

◦ ISO/IEC 24028: Information technology - Artificial Intelligence
(AI) - Overview of trustworthiness in Artificial Intelligence.

◦ ISO/IEC 24029: Information technology - Artificial Intelligence
(AI) - Assessment of the robustness of neural networks.

◦ ISO/IEC 23894 – Information technology - Artificial intelligence
– Risk management.

◦ ISO/IEC 24368: Information technology - Artificial Intelligence
(AI) - Overview of Ethical and Societal Concerns.

• SC 42/WG 4 – AI Use cases and applications.

◦ ISO/IEC 24030: Information technology - Artificial Intelligence
(AI) – Use cases.

• SC 42/WG 5 – Computational approaches and computational character-
istics of AI systems.

◦ ISO/IEC 24372: Information technology - Artificial Intelligence
(AI) - Overview of computational approaches for AI systems.

• SC 42/JWG 1 - Governance implications of AI.
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◦ ISO/IEC 38507 - Information technology - Governance of IT –
Governance implications of the use of artificial intelligence by
organisations.

• ISO/IEC JTC 1/SC 40 IT Service Management and IT Governance.
• SC 40/WG 1 has started work on ISO/IEC 38508 Governance of data —
Guidelines for data classification.

• In addition to the above projects, several study topics are assigned to the
various working groups that also include topics that cross multiple areas
such as ethics, societal concerns and lifecycle that are being considered
across the work programme.

The list with standards and/or projects under the direct responsibility of
ISO/IEC JTC 1/SC 42 secretariat is given below:

• ISO/IEC WD TS 4213 - Information technology - Artificial Intelligence
— Assessment of machine learning classification performance.

• ISO/IEC WD 5259-1 - Data quality for analytics and ML - Part 1:
Overview, terminology, and examples.

• ISO/IEC AWI 5259-2 - Data quality for analytics and ML - Part 2: Part
2: Data quality measures.

• ISO/IEC WD 5259-3 - Data quality for analytics and ML - Part 3: Data
quality management requirements and guidelines.

• ISO/IEC WD 5259-4 - Data quality for analytics and ML - Part 4: Data
quality process framework.

• ISO/IEC WD 5338 - Information technology - Artificial intelligence —
AI system life cycle processes.

• ISO/IECWD 5339 - Information Technology - Artificial Intelligence —
Guidelines for AI applications.

• ISO/IEC WD 5392 - Information technology - Artificial intelligence -
Reference architecture of knowledge engineering.

• ISO/IEC AWI TR 5469 - Artificial intelligence - Functional safety and
AI systems.

• ISO/IEC AWI TS 6254 - Information technology - Artificial intelligence
— Objectives and methods for explainability of ML models and AI
systems.

• ISO/IEC 20546:2019 - Information technology - Big data - Overview
and vocabulary.

• ISO/IEC TR 20547-1:2020 - Information technology - Big data refer-
ence architecture — Part 1: Framework and application process.

• ISO/IEC TR 20547-2:2018 - Information technology - Big data refer-
ence architecture — Part 2: Use cases and derived requirements.
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• ISO/IEC 20547-3:2020 - Information technology - Big data reference
architecture — Part 3: Reference architecture.

• ISO/IEC TR 20547-5:2018 - Information technology - Big data refer-
ence architecture — Part 5: Standards roadmap.

• ISO/IEC CD 22989.2 - Artificial intelligence - Concepts and
terminology.

• ISO/IEC CD 23053.2 - Framework for Artificial Intelligence (AI)
Systems Using Machine Learning (ML).

• ISO/IEC CD 23894 - Information Technology - Artificial Intelligence -
Risk Management.

• ISO/IEC DTR 24027 - Information technology - Artificial Intelligence
(AI) - Bias in AI systems and AI aided decision making.

• ISO/IEC TR 24028:2020 - Information technology - Artificial intelli-
gence - Overview of trustworthiness in artificial intelligence.

• ISO/IEC TR 24029-1 - Artificial Intelligence (AI) - Assessment of the
robustness of neural networks - Part 1: Overview.

• ISO/IEC AWI 24029-2 - Artificial intelligence (AI) - Assessment of
the robustness of neural networks - Part 2: Methodology for the use of
formal methods.

• ISO/IEC PRF TR 24030 - Information technology - Artificial Intelli-
gence (AI) - Use cases.

• ISO/IEC AWI TR 24368 - Information technology - Artificial intelli-
gence - Overview of ethical and societal concerns.

• ISO/IEC DTR 24372 - Information technology - Artificial intelligence
(AI) - Overview of computational approaches for AI systems.

• ISO/IEC CD 24668 - Information technology - Artificial intelligence -
Process management framework for big data analytics.

• ISO/IEC AWI 25059 - Software engineering - Systems and software
Quality Requirements and Evaluation (SQuaRE) - Quality model for AI-
based systems

• ISO/IEC DIS 38507 - Information technology — Governance of IT
- Governance implications of the use of artificial intelligence by
organizations.

• ISO/IEC AWI 42001 - Information Technology - Artificial intelligence
- Management system.

ISO/IEC JTC 1/SC 42 has built more than 30 active liaisons with ISO and
IEC committees, SDOs and industry organisations to promote cooperation
and creating the industry ecosystem around AI.
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10.7.5 IEEE

IEEE Standards Association (SA) has focused on the use and impact of
autonomous and intelligent systems (A/IS) as they become pervasive. There
is a necessity to establish societal and policy guidelines for such systems to
remain human-centric, serving humanity’s values and ethical principles. In
this context, the IEEE Global Initiative on Ethics of Autonomous and Intel-
ligent Systems was started with a project addressing the “Ethically Aligned
Design for Business: A call to action for businesses using AI” [18].

IEEE’s AI standards series P7000TM address ethical considerations cov-
ering issues regarding autonomous and intelligent systems, including trans-
parency, privacy, algorithmic bias, children’s data, employee data, creating
an algorithmic agent for individuals, creating an ethical robotic ontologi-
cal framework, dealing with robotic nudging, creating a uniform fail-safe
standard for A/IS, defining well-being metrics relating to A/IS, assessing
news sources to keep them accountable and objective in reporting, creating
machine-readable privacy terms for all individuals and updating facial recog-
nition systems and databases to avoid bias. A list of the IEEE standardisation
projects is presented below:

• IEEE P7000 - Model Process for Addressing Ethical Concerns During
System Design.

• IEEE P7001 - Transparency of Autonomous Systems (defining levels of
transparency for measurement).

• IEEE P7002 - Data Privacy Process.
• IEEE P7003 - Methodologies to address algorithmic bias in the devel-
opment of AI systems.

• IEEE P7004 - Certification framework for child/student data gover-
nance.

• IEEE P7005 - Certification framework for employer data governance
procedures based on GDPR.

• IEEE P7006 - Personalized AI agent specification.
• IEEE P7007 - Ontologies at different levels of abstraction for ethical
design.

• IEEE P7008 - Ethically Driven AI Nudging methodologies.
• IEEE P7009 - Fail-Safe design of autonomous and semi-autonomous
systems.

• IEEE P7010 - Well-being metrics for ethical AI.
• IEEE P7011 - Process of Identifying and Rating the Trustworthiness of
News Sources.
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• IEEE P7012 - Machine Readable Personal Privacy Terms.
• IEEE P7013 - Benchmarking Accuracy of Facial Recognition systems.
• IEEE ECPAIS - Certification for products and services in transparency,
accountability, and algorithmic bias in systems.

Different other IEEE technical standardisation projects address various
aspects of ML and different AI techniques:

• IEEE P2807 - Framework of Knowledge Graphs.
• IEEE P2807.1 - Standard for Technical Requirements and Evaluating
Knowledge Graphs.

• IEEE P2830, Standard for Technical Framework and Requirements of
Shared Machine Learning.

• IEEE P2841 - Framework and Process for Deep Learning Evaluation.
• IEEE P3652.1 - Guide for Architectural Framework and Application of
Federated Machine Learning.

IEEE SA started developing an Ethics Certification Program for Autonomous
and Intelligent Systems (ECPAIS), and the development is open to paid
member organisations and individuals. ECPAIS seeks to develop three sep-
arate processes for certifications related to transparency, accountability, and
algorithmic bias.

10.7.6 IETF

The activities related to AI are addressed by the IETF working group on
“Autonomic Networking Integrated Model and Approach” [19]. With the
development of the networks, it is necessary to introduce artificial intelligence
technology to achieve self-adjustment, self-optimisation, and self-recovery of
the network by collecting massive network state and machine learning data.

The work in IETF defined the architecture of Network Artificial Intel-
ligence (NAI), including the key components and the critical protocol
extension requirements.

IETF working group on “Autonomic Networking Integrated Model and
Approach” develops a system of autonomic functions that carry out the
intentions of the network operator without the need for detailed low-level
management of individual devices.

Autonomic networking refers to the self-managing characteristics (con-
figuration, protection, healing, and optimisation) of distributed network ele-
ments, adapting to unpredictable changes while hiding intrinsic complexity
from operators and users.
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Autonomic Networking, which usually involves closed-loop control,
applies to the complete network (functions) lifecycle (e.g., installation,
commissioning, operating, etc.). An autonomic function that works in a
distributed way across various network elements is a candidate for protocol
design. Such functions should allow central guidance and reporting and
co-existence with non-autonomic methods of management.

The working group aims to enable the progressive introduction of auto-
nomic functions into operational networks and reusable autonomic network
infrastructure to reduce operating expenses.

10.7.7 ITU-T

ITU-T Focus Group on Machine Learning addresses the activities related
to AI for future networks, including 5G. The working group has generated
several documents covering methods for evaluating the intelligence level of
future networks, data handling to enable machine learning in future networks,
use cases of ML in future networks and unified architecture for ML in 5G.

A list of ITU-T documents related to AI is presented below:

• Recommendation ITU T Y.3172 - Architectural framework for machine
learning in future networks including IMT-2020.

• Recommendations ITU-T Y.3173 - Framework for evaluating intelli-
gence levels of future networks including IMT-2020.

• Y.3174 - Framework for data handling to enable machine learning in
future networks including IMT-2020.

• Y.3176 - Machine learning marketplace integration in future networks
including IMT-2020.

• Y.3170 - Requirements for machine learning-based quality of service
assurance for the IMT-2020 network.

• Y.3175 - Functional architecture of machine learning-based quality of
service assurance for the IMT-2020 network.

• Y.3531 - Cloud computing - Functional requirements for machine
learning as a service.

• Y.ML-IMT2020-NA-RAFR - Architecture framework of AI-based net-
work automation for resource adaptation and failure recovery in future
networks including IMT-2020.

• Y.ML-IMT2020-serv-prov - Architecture framework of user-oriented
network service provisioning for future networks including IMT-2020.

ITU-T plans to release a document on “Artificial Intelligence Standard
Roadmap” [20] to assist in developing AI standards in the IT fields by
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providing information about existing and under developing standards in key
SDOs. In addition, it describes the overviews of AI itself and AI-related
technical areas from a standards perspective, AI-related activities in SDOs,
and gap analysis.

10.8 AI Certification

Certification is the process of issuing a certificate to indicate conformance
with a standard, a set of guidelines or some similar norms.

Certification must have value to be accepted, successfully deployed,
approved and promoted by industry.

A certification framework for AI-based systems in industrial environ-
ments can have value and provide support for the assessment and benchmark
of AI-based products, services, models, algorithms for key requirements.

Producers can choose to have their AI-based products certified because
they believe it will make the product more competitive.

Producers themselves may declare that their AI-based products con-
form to specified standards and issue accordingly a certificate referred to
as self-certification or first-party certification. In other cases, a person, or
an organisation with interest as a product user may require that products
be submitted for certification by an independent body; this is referred to
as requested third-party certification. Third-party certification is, therefore,
when a body, independent of both the producer and the user, carries out the
certification process.

The situation is slightly different in industrial sectors. Industrial stake-
holders will not invest resources in a certification that does not achieve a
goal. In other words, for certification of AI-based systems, for example, to be
successful, its effect must match the stated purpose of the industrial sector.

In other cases, manufacturers of safety-critical systems may need AI-
based systems certification because this is a regulatory requirement. Many
industries have a regulatory authority that oversees all projects. The industry’s
regulations may specify that an independent third party demonstrate the con-
formity of a product. In this case, certification is mandatory, as opposed to the
above-mentioned requested certification. This is referred to as a mandatory
third-party certification.

The vast majority of AI4DI project partners agree that the standardis-
ation goal must be to improve the efficiency of manufacturing processes
and the quality of the resulting products to stay highly competitive in the
global market. Furthermore, the quality embodies not only compliance with
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functional requirements but also non-functional requirements. An AI-based
product, system or process that failed the safety or ethical certification has
not achieved its goal.

Based on the above and regardless of whether the certification is requested
or mandatory, first-, second, or third-party, a common AI certification frame-
work for AI-based systems in industrial sectors is needed. Furthermore, this
AI certification framework should have the following two roles:

• To function as a quality and efficiency assessment framework during
development.

• To serve as a conformity assessment framework during certification.

The AI certification framework’s purpose should be to automate the pro-
cedures that support development and certification by offering standardised
inspection, testing, calibration, verification and validation tools and methods.
This AI certification framework would allow for many inferences using the
AI algorithm under test on standardised input datasets. The results would be
valuable inputs for designers and developers as well as certifiers.

In addition, the AI certification framework should have a comprehensive
set of best-fit use cases for experimentation relevant to most industrial sectors
(with minor adjustments) and specialised for one or several sectors.

Moreover, the AI certification must ensure that certified processes and
products are more efficient and have improved quality. For instance, in the
case of prediction AI systems, there must be an assurance that the prediction
is as accurate as it is claimed to be.

Furthermore, virtual validation will be an essential tool, especially in
autonomous systems where regulatory controls impose further qualifications
for AI-based systems.

The standardised tools, AI methods, datasets, use-cases must ensure
repeatability of the assessment results carried out by the same body and
reproducibility of the results from assessment by different bodies.

The extent and scope of certification efforts largely depend on the AI sys-
tem in question. Therefore, the AI certification framework should also include
a classification scheme, allowing AI systems to be classified in desired dimen-
sions. One such classification scheme is illustrated in Figure 10.4 and used as
reference in several ECSEL JU projects such as AI4DI, ArchitectECA2030
and AI4CSM [1][24][25].

The criteria for evaluating AI systems reflect their suitability and can
be uni- or multidimensional, technical, legal, or ethical, depending on the
application and the application domain.
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Figure 10.4 Classification scheme along with criticality, AI methods and capabilities.
Adapted from [26].

One typical dimension is the potential for harm, which is commonly
agreed to play a critical role in the acceptance of AI. The potential for damage
can vary from minimal to unacceptable and is often related to the degree
of autonomy. Other aspects, such as privacy and integrity, can be reflected
through this critical dimension.

Given the wide range of capabilities of AI (from perception and under-
standing to communication and action), capabilities is another dimension, as
the more capable the system, the greater is the risk for harm. AI methods
are the third dimension, ranging from simple searching and optimisation to
machine and hybrid learning. AI methods are used to achieve various AI
capabilities. The more sophisticated the methods, the greater the risk.

Industrial sectors may embrace AI standardisation and certification at
their own pace. But even if the ultimate goal is not to obtain a certificate, start-
ing the design with certification in mind and using this framework towards
efficient processes and high-quality AI-based products, systems, processes
means the standardisation has achieved its goal.

10.9 Recommendations for an AI Standardisation
Roadmap for Industrial Environments

The AI standards developments for industrial environments need to address
responsible AI through standards development activities and voluntary use.
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For applications in the industrial sector, AI researchers and projects that
address the development of AI technologies and applications need to be
involved in ongoing standardisation processes and create links with standards
committees to contribute to and track outcomes. Identifying gaps in the
AI standardisation landscape can benefit the development of pre-normative
activities and standards with views from independent experts that provide and
transfer their findings and standardisation proposal to international standards
bodies under existing procedures.

In industrial environments, it is recommended that the standardisation and
regulatory work concerning AI technologies and applications is progressed
through multi-stakeholder discussions, allowing approaches to risk manage-
ment to be tested to provide fit-for-purpose, scalability, and foster innovation.

The AI standards in industrial sectors are used to increase knowledge
of reliability, trustworthiness, safety, security, and responsibility among
AI developers and support the adoption of AI in different manufacturing
processes.

Regulatory interventions in industrial sectors require to be proportionate
to the possible and recognised harm(s) posed by AI in specific settings of the
industrial sectors and identified areas of heightened vulnerability.

Different forms of certification models for AI are proposed, which
involves industrial stakeholders developing the outlines of what could be
recognised as responsible AI [3][6][7]. This is challenging as many large
companies developed their principles for AI, which display elements of
both more common values and more specific guidance elements through
complementary resources.

The AI-based applications in industrial environments involve industry
stakeholders and ecosystems that need best practices, standardised solutions,
industry-grade benchmarking and reference data sets for training and learn-
ing. Further research is needed on industrial AI standards from technical
and industrial perspectives. Technical standards desiderata can inform new
standardisation efforts, and industrial strategies can develop paths for AI
standards to spread in practice in different industrial sectors.

To evaluate the performance of AI-based algorithms, guidelines and
reference datasets must be developed that can be used by various industrial
actors in implementing AI solutions. The datasets depend on the industrial
application area, and special requirements are placed on them together with
guidelines that evaluate the datasets quantity/quality for training, validation,
and testing.
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AI and ML allow for vulnerabilities and misconfigurations, and as the
manufacturing facilities are using more AI-based solutions, the more con-
cerned they are about security risks. Open-source code is susceptible to
attackers who can inject malicious code or has vulnerabilities or vulnerable
dependencies.

Protecting the information in industrial environments is a crucial pillar
for the performance and competitiveness of each manufacturing facility with
data protection standards applied to AI systems, including training data.

All AI-based systems must integrate security by design built-in and
developed around core data security principles, including encryption, log-
ging, monitoring, authentication, and access controls. These policies must be
applied even stricter considering the heterogeneous nature of AI- based solu-
tions, including HW/SW, models, algorithms, IIoT devices and systems using
open-source algorithms, commercial “black box” AI systems, or built-in AI
models.

The results and outcomes from research and innovation projects with the
involvement of the AI community should be aligned and provide input to the
standards under development to further accelerate the advancements in AI
for digitising industry. European AI projects and initiatives should dedicate
efforts to understanding and engaging in standardisation processes through
liaisons or partnerships with specific third-party organisations.

It is recommended that efforts be made to propose standardised AI virtual
testing environments for industrial applications. These actions should include
the development of standards for AI virtual testing facilities, for interoper-
ability between AI-based digital twins and standardised AI virtual testing
environments and standards for AI physical simulations/modelling (sensors,
actuators, etc.).

Within industrial organisations, closer cooperation between product
development units with experience in standards, industrial processes, and AI
research teams can increase the efficient use of AI standards, identify the
gaps, and enhance or create new standards.

Adopting AI standards under development and the involvement in activi-
ties for shaping future standards can further support the collaboration between
AI research groups and the industry.

AI researchers should engage in ongoing standardisation processes.
Projects addressing industrial AI should consider becoming liaisons with
standards committees to contribute to and track developments. Different
standards may benefit from independent development initially and then be
transferred to an international standards body under existing procedures. The
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involvement in AI standardisation activities support the work to create a
roadmap for global AI standardisation and identify the gaps and the needs for
further standardisation efforts. A roadmap is a tool for individual researchers,
organisations, industrial consortia, or larger groups to evaluate the existing
activities and initiate standardisation efforts in more AI-based technology and
applications with priorities coming from both industry and the AI research
community.

The acceleration of the digital transformation of the industry requires
further research on AI standards from both technical and industrial enter-
prise perspectives. Technical AI standards requirements can generate new
standardisation efforts, and industrial enterprise strategies can develop paths
across industries in practice.

10.10 Conclusion

Building and sustaining trust in industrial AI requires developing ecosys-
tems of industrial stakeholders that work together to define the functional
and non-functional requirements for AI-based hardware, software, models,
and systems; and to provide and promote reference designs and use cases
employed across various industrial sectors.

In different industrial sectors, market incentives drive companies to
develop product and service standards in relation to the use of AI technolo-
gies. Standards are a foundation for coordination and ensure that AI-based
products and services produced across an industrial sector or different sectors
are interoperable.

Standards constitute a common language and practice of communication
among industry stakeholders that build guardrails that help support positive
AI research and development outcomes.

The requirements for AI in industrial environments have a different focus
and weight compared to those of AI in consumer and general business
applications. Reliability, maintainability, explainability, safety, and security
privacy are in many cases the primary concerns. Privacy, inclusion, and
fairness are the specific issues addressed.

Industrial companies working with AI solutions are taking measures to
protect personal information and personally identifiable information con-
nected with deployments in the manufacturing processes.

This article presented the AI standardisation role and needs in indus-
trial environments, derived from requirements and challenges defined and
agreed upon by industrial stakeholders, provided an overview of ongoing AI
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standardisation efforts, and offered recommendations for an AI standardisa-
tion roadmap for industrial environments.

The aim of this article is to encourage support for standardisation
efforts in the form of improved and new representative use cases from
various industry sectors and possibly spark new research topics related to
AI standardisation.
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