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Abstract: The unprecedented progress in Artificial Intelligence (AI), particularly in deep learning algorithms 
with ubiquitous internet connected smart devices, has created a high demand for AI computing on the edge 
devices. This review studied commercially available edge processors, and the processors that are still in 
industrial research stages. We categorized state-of-the-art edge processors based on the underlying 
architecture, such as dataflow, neuromorphic, and Processing in-Memory (PIM) architecture. The processors 
are analyzed based on their performance, chip area, energy efficiency, and application domains. The supported 
programming frameworks, model compression, data precision, and the CMOS fabrication process technology 
are discussed. Currently, most of the commercial edge processors utilize dataflow architectures. However, 
emerging non-von Neumann computing architectures have attracted the industry in recent years. 
Neuromorphic processors are highly efficient for performing computation with fewer synaptic operations, and 
several neuromorphic processors offer online training for secured and personalized AI applications. This 
review found that the PIM processors show significant energy efficiency and consume less power compared to 
dataflow and neuromorphic processors. The future direction of the industry would be to implement state-of-
the-art deep learning algorithms in emerging non-Von Neumann computing paradigms for low power 
computing on the edge devices. 

Keywords: AI Accelerator; AI Frameworks; deep learning; edge computing; low power applications; 
quantization; PIM or CIM computing; neuromorphic computing  

 

1. Introduction 

Artificial intelligence, and in particular deep learning, is becoming increasingly popular in edge 
devices and systems. Deep learning algorithms require significant amounts of computations ranging 
from a few million to billions of operations based on the depth of the Deep Neural Network (DNN) 
models, and thus, there is an urgent need to process these efficiently. As shown in Figure 1, two 
possible approaches for processing deep learning inference on edge devices are directly on the device 
using highly efficient processors, fog, or cloud computing. A key benefit of fog/cloud-based 
processing is that large, complex models can be run without overburdening the edge device. The 
drawbacks of this approach are the need for a reliable communications channel, communications 
cost, communications delay, and potential loss of privacy. 
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Figure 1. Illustration of edge computing with cloud interconnection. 

In situations where a rapid response is needed, privacy is paramount, or a reliable 
communications channel may not always be available, processing of the deep learning network on 
the edge device or system is the only option [1–3]. As a result, a large amount of academic and 
industrial research is being done to develop efficient deep learning edge processors [3]. Several 
companies have already announced or have started selling such processors. This paper provides 
details on these commercial deep learning edge processors and compares their performances based 
on manufacturer provided information. Additionally, the paper delves into the frameworks and 
applications related to these processors. The scope of edge computing includes end devices and edge 
nodes [4]. End devices include smartphones, wearables, autonomous cars, gadgets, and many more. 
Edge nodes are switches, routers, micro data centers, and servers deployed at the edge [5,6]. Table 1 
lists some of the key characteristics of edge deep learning processors that are considered in this paper. 

There are multiple types of AI accelerators enabling DNN computing: Central Processing Unit 
(CPU), Graphics Processing Unit (GPU), Tensor Processing Unit (TPU), Application Specific 
Integrated Circuit (ASIC), System on-Chip (SoC), Processing in-Memory (PIM), and Neuromorphic 
processor. ASIC, SoC, TPU, PIM, and Neuromorphic systems are mainly targeted for low-power AI 
applications in edge and IoT devices. Google introduced different versions of the TPU that are used 
in the Google cloud and in the edge for training and inference [7]. Neuromorphic processors are non-
Von Neumann computing systems that mimic human cognitive information processing systems. 
They generally utilize spiking neural networks (SNN) for processing [8,15]. Several tech companies, 
including Intel and IBM [8–10] have developed brain-inspired neuromorphic processors for edge 
applications. PIM is another non-Von Neumann computing paradigm that eliminates the data 
transfer bottleneck by having the computation take place inside a memory array in a highly parallel 
fashion [16–20]. 

PIM technology reduces the data movement and latency compared to traditional architectures 
and makes the computations significantly more efficient. Edge processors usually perform inference 
with highly optimized DNN models. The models are often compressed to reduce the number of 
computations, and the weight precision is usually quantized from the floating-point (FP) format 
normally used in training. The quantized integer (INT) and brain-float (BF) are used in inference 
processors. Typically, INT4, INT8, INT16, FP16, or BF16 numerical precision is used in the inference 
processor. However, recently released processors from multiple startups can compute with very low 
precision while trading off accuracy to some extent [21]. 
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Table 1. Brief Scopes of The Paper. 

Architecture Precision 
Process 

(nm) 
Metrics Frameworks Algorithm/Models Applications 

GPU 

TPU 

Neuromorphic 

PIM 

SoC 

ASIC 

FP-

8,16,32 

BF-16 

INT-

1,2,4,8,16 

4 

5 

7 

10 

14 

16 

20 

22 

28 

40 

Area 

Power 

Throughput 

Energy 

Efficiency 

Tensorflow 

(TF) 

TF Lite 

Caffe2 

Pytorch 

MXNet 

ONNX 

MetaTF 

Lava 

Nengo 

OpenCV 

DarkNet 

SNN 

MLP 

CNN 

VGG 

ResNet 

YOLO 

Inception 

MobileNet 

RNN 

GRU 

BERT 

LSTM 

Defense 

Healthcare 

Cyber Security 

Vehicle 

Smartphone 

Transportation 

Robotics 

Education 

UAV Drones 

Communication 

Industry 

Traffic Control 

The current trend of computing technology is to enable data movement faster for higher speed 
and more efficient computing. To achieve this, AI edge processors need some essential prerequisites: 
lower energy consumption, smaller area, and higher performance. Neuromorphic and PIM 
processors are becoming more popular for their higher energy efficiency and lower latency 
[9,10,19,20]. However, a single edge processor usually does not support all types of DNN networks 
and frameworks. There are multiple types of DNN models, and each usually excels at particular 
application domains. For example, Recurrent Neural Networks (RNN), Long-Short-Term-Memory 
(LSTM), and Gated Recurrent Unit (GRU) are suitable for natural language processing [22–28], but 
Convolutional Neural Networks (CNN), Residual Neural Network (ResNet), and Visual Geometry 
Group (VGG) networks are better for detection and classification [29–31]. 

The CMOS technology node used for fabricating each device has a significant impact on its area, 
energy consumption, and speed. TSMC currently uses 3nm extreme Ultraviolet (UV) technology for 
the Apple A17 processor [32]. TSMC is currently aspiring to develop 2nm technology by 2025 for 
higher performance and highly energy-efficient AI computing processors [33]. Samsung’s 
smartphone processor Exynos 2200 is in the market developed with 4nm technology [34]. Intel 
utilized its Intel-4/7nm technology for its Loihi 2 neuromorphic processor [9].  

This article provides a comprehensive review of commercial deep learning edge processors. 
Over 100 edge processors are listed along with their key specifications. We believe this is the most 
comprehensive technical analysis at present. The main contributions of this review are: 
1. It provides a comprehensive and easy to follow description of the state-of-the-art edge devices and 

their underlying architecture.  
2. It reviews the supported programming frameworks of the processors and general model 

compression techniques to enable edge computing. 
3. The study has analyzed the technical details of the processors for edge computing and provides 

charts on hardware parameters. 
This paper is arranged as follows: section 2 describes key deep learning algorithms very briefly. 

Section 3 describes model compression techniques commonly used to optimize deep learning 
networks for edge applications. Section 4 discusses the frameworks available for deep learning AI 
applications. Section 5 describes the frameworks for developing AI applications on SNN processors. 
The processors are reviewed briefly in section 6. Section 7 discusses the data on the processors and 
performs a comparative analysis. A brief summary of this review study is presented in section 8.  
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2. Deep Learning Algorithms in Edge Application 

Deep learning (DL) is a subset of AI and machine learning. It consists of multilayered artificial 
neural network architectures that optimize the network learning parameters to recognize the patterns 
and sequences for numerous applications. The networks can be trained for specific tasks, such as 
speech recognition [35], image recognition [36,37], security [38], anomaly detection [39], and fault 
detection [40]. Deep learning algorithms can be classified into the following categories: supervised, 
semi-supervised, unsupervised, and deep reinforcement learning [41,42].  

This study is focused on AI accelerators for edge/IoT applications. Supervised and semi-
supervised DL categories are usually trained on high-performance computing systems and then 
deployed to edge devices. Supervised learning models utilize labeled data samples. These models 
usually extract key features from incoming data samples and use the features to classify the sample. 
One of the most popular categories of supervised DL networks is CNNs [42]. Some common CNN 
architectures include VGG [43], ResNet [44], and GoogleNet [45]. Semi-supervised neural networks 
use a few labels to learn the categories and could be generative models or time-based sequence 
learning models. The semi-supervised topologies include GAN, GRU, RNN, and LSTM. The internal 
layers of these NN models are composed of CNN and fully connected network topologies. A number 
of edge processors support the semi-supervised network models for automation applications. For 
example, DeepVision (now Kinara) introduced ARA-1 (2020) and ARA-2 (2022) [46], which target 
autonomous applications, such as robotics, autonomous vehicles, smart tracking, and autonomous 
security systems. Kneron introduced KL720 in 2021, which supports semi-supervised network 
topologies for a wide range of applications [47]. In 2021, Syntiant released a new PIM AI processor 
for extreme edge applications, accommodating supervised and semi-supervised network topologies 
and supporting CNN, GRU, RNN, and LSTM topologies [20].  

The computational complexity of DL models is a barrier to implementing these models for 
resource constrained edge or IoT devices. For edge applications, the deep neural network should be 
designed in an optimized way that is equally efficient without losing accuracy significantly. Common 
deep learning application areas in the edge include [48–55]: image classification, object detection, 
object tracking, speech recognition, health care, and natural language processing (NLP). This section 
will discuss some lightweight DL models for edge applications to perform classification and object 
detection.  

i. Classification 

Classification is probably the most popular use of CNNs and is one of the key applications in 
the computer vision field [56–58]. While larger networks with higher accuracies are utilized in 
desktop and server systems, smaller and more highly efficient networks are typically used for edge 
applications. 

SqueezeNet [59,60] utilizes a modified convolutional model that is split into squeeze and expand 
layers. Instead of 3x3 convolution operations seen in typical CNNs, a much simpler 1x1 convolution 
operation is used. SqueezeNet achieves AlexNet levels of accuracy with 50x fewer network 
parameters [60]. Using model compression techniques, SqueezeNet can be compressed to 0.5 MB, 
which is about 510x smaller than AlexNet. 

MobileNet [61] was created by Google and is one of the most popular DL models for edge 
applications. MobileNet substitutes the traditional convolution operation with a more flexible and 
efficient depthwise separable operation, significantly reducing computational costs. The depthwise 
separable technique performs two operations: depthwise convolution and pointwise convolution. 
There are three available versions of MobileNet networks: MobileNet v1 [61], MobileNet v2 [62], and 
MobileNet v3 [63]. MobileNet v2 builds on MobileNet v1 by adding a linear bottleneck and an 
inverted residual block at the end. The latest MobileNet v3 utilizes NAS (Neural Architecture Search) 
and NetAdapt to design a more accurate and efficient network architecture for inference applications 
[63]. 
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ShuffleNet [64] utilizes group convolution and channel shuffle to reduce computation 
complexity. It increases accuracy by retraining with minimal computational power. There are two 
versions of ShuffleNet, ShuffleNet v1 and ShuffleNet v2 [64,65]. 

EfficientNet is a family of the convolutional network model scaled from other models. It can 
uniformly scale all the network dimensions, such as width, depth, and resolution by using a 
compound coefficient [66]. The scaling method facilitates the development of a family of networks. 
Unlike other DL models, the EfficientNet model focuses not only on accuracy but also on the 
efficiency of the model. 

ii. Ditection 

Object detection is an important task in computer vision that identifies and localizes all the 
objects in an image. This application has a wide range of applications, including autonomous 
vehicles, smart cities, target tracking, and security systems [67]. The broad range of object detection 
and DL network applications are discussed in [68,69]. DL networks for object detection can be 
categorized into two types: i) single-stage (such as SSD, YOLO, and CenterNet) and ii) two-stage 
(such as Fast/Faster RCNN). There are multiple criteria for choosing the right architecture for the 
edge application. Single-stage detectors are computationally more efficient than two-stage 
architecture, making them a better choice for edge applications. For example, YOLO v5 demonstrates 
better performance compared to Faster-RCNN-ResNet-50 [67]. 

iii. Speech Recognition and Natural Language Processing 

Speech recognition and natural language processing are becoming increasingly important 
applications of deep learning. Speech emotion and speech keyword recognition are the objectives of 
speech recognition. The process includes multiple state-of-the-art research fields, such as AI, pattern 
recognition, signal processing, and information theory. Apple's Siri and Google's Alexa illustrate the 
potential applications of speech recognition and manifest better computer-human interfacing. RNN 
based neural networks and time delay DNN (TDNN) are popular choices for speech recognition [70]. 
Combined networks, such as TDNN-LSTM [71] or RNN-LSTM, are also popular choices for speech 
recognition [72].  

Detailed analysis of deep neural networks for NLP can be found in [73,74]. Important 
applications of NLP are machine translation, named entity recognition, question answering system, 
sentiment analysis, spam detection, and image captioning. An early NLP model was 
sequence2sequence learning, based on RNNs. More recently, NLP was boosted by the advent of the 
transformer model, BERT [75]. BERT utilized an attention mechanism that learned contextual 
relations between words [75]. Other state-of-the-art NLP models are GPT-2 [76], GPT-3 [77], GPT-4 
[78], and switch transformer [79]. However, these models run on HPC systems and are thus not 
compatible with edge devices. DeFormer [80], MobileBERT [81], and EdgeBERT [82] are some of the 
examples of NLP models targeted for edge devices. A more detailed discussion on NLP models for 
edge devices can be found in [83]. 

Syntiant [20] has recently been building tiny AI chips for voice and speech recognition and has 
attracted attention in the tech industry. Syntiant’s Neural Decision Processors (NDPs) are certified by 
amazon for use in Alexa-based devices [84]. Other voice recognition AI chips include NXP’s i.MX8, 
i.MX9x [85–87] and M1076 from Mythic [88–90]. LightSpear 2803S from Gyrfalcon can be utilized for 
NLP [91,92]. IBM unveiled its NorthPole edge processor for NLP applications at the HotChips 2023 
conference [299]. 

3. Model Compression 

Unoptimized DL models contain considerable redundancy in parameters and are generally 
designed without consideration of power or latency. Lightweight and optimized DL models enable 
AI application on edge devices. Designing effective models for running on resource-constrained 
systems is challenging. DNN model compression techniques are utilized to convert unoptimized 
models to forms that are suitable for edge devices. Model compression techniques are studied 
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extensively and discussed in [93–98]. The techniques include parameter pruning, quantization, low-
rank factorization, compact filtering, and knowledge distillation. In this section, we will discuss some 
of the key model compression techniques.  

i. Quantization 

Quantization is a promising approach to optimize the DNN models for edge devices. Data 
quantization for edge AI has been studied extensively in [94–101]. Parameter quantization takes a DL 
model and compresses its parameters by changing the floating-point weights to a lower precision to 
avoid costly floating-point computations. As shown in Table 2, most edge inference engines support 
INT4, 8, or 16 precisions. Quantization techniques can be taken to the limit by developing Binary 
Neural Networks (BNN) [101]. The BNN uses a single bit to represent activations and reduces 
memory requirements. Leapmind is the pioneer of low precision computations in their edge 
processor, Efficiera [21]. It is an ultra-low power edge processor and can perform AI computations 
with 1 bit weights and 2 bit activations.  

Recent hardware studies show that lower precision does not have a major impact on inference 
accuracy. For example, Intel and Tsinghua University have presented QNAP [102], where they utilize 
8 bits for weights and activations. They show an inference accuracy loss of only 0.11% and 0.40% for 
VGG-Net and GoogleNet, respectively, when compared to a software baseline with the ImageNet 
dataset. Samsung and Arizona State University have experimented with extremely low precision 
inference in PIMCA [103], where they utilize 1 bit for weights and activations. They show that VGG-
9 and ResNet-18 had accuracy losses of 3.89% and 6.02% respectively. 

Lower precision increases the energy and area efficiency of a system. PIMCA can compute 136 
and 35 TOPS/W in 1 and 2 bit precision, respectively for ResNet-18. TSMC [104] has studied the 
impact of low precision computations on area efficiency. They show 221 and 55 TOPS/mm2 area 
efficiency in 4- and 8-bit precision. Thus, with 4-bit computation, they achieve about 3.5x higher 
computation throughput per unit area compared to 8-bit computation. 

Brain-Float-16 (or BF-16) [105] is a limited precision floating point format that is becoming 
popular for AI applications in edge devices. BF16 combines certain components of FP32 and FP16. 
From FP16, the BF16 utilizes 16 bits overall. From FP32, BF16 utilizes 8 bits for the exponent field 
(instead of 5 bits for FP16). A key benefit of BF16 is the format gets the same dynamic range and 
inference accuracy as of FP32 [106]. BF16 speeds up the MAC operation in edge devices to enable 
faster AI inference on the edge devices. Both the GDDR6-AiM from SK Hynix [107] and Pathfinder-
1600 from Blaize [108,109] support BF16 for AI applications. The supported precision levels of various 
edge processors are presented in Table 2. 

ii. Pruning 

Pruning is the technique to remove unnecessary network connections to make the network 
lightweight for deploying on edge processors. Several studies [94–101,110–112] show that upto 91% 
of weights in AlexNet can be pruned with minimal accuracy reduction. Various training methods 
have been proposed to apply pruning to pre-trained networks [101]. Pruning however has 
drawbacks, such as creating sparsity in the weight matrices. This sparsity leads to unbalanced 
parallelism in the computation and irregular access to the on-chip memory. Several techniques have 
been developed [113,114] to reduce the sparsity.  

iii. Knowledge Distillation 

Knowledge distillation, introduced by B. Christian et al. [115], is a technique where the 
knowledge of an ensemble of larger networks is transferred to a smaller network without loss of 
validity. This can reduce the computational load significantly. The effectiveness of knowledge 
distillation is studied extensively in [94–101,116–120], where the authors show that the distillation of 
knowledge from a larger regularized model into a smaller model works effectively. Various 
algorithms have been proposed to improve the process of transferring knowledge, such as 
adversarial distillation, multi-teacher distillation, cross-modal distillation, attention-based 
distillation, quantized distillation, and NAS based distillation [121]. Although knowledge distillation 
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techniques are mainly used for classification applications, they are also applied to other applications, 
such as object detection, semantic segmentation, language modeling, and image synthesis [122].  

4. Framework for Deep Learning Networks 

At present, the majority of edge AI processors are designed for inference only. Network training 
is typically carried out on higher performance desktop or server systems. There are a large variety of 
software frameworks to train deep networks and also to convert them into lightweight, suitable for 
edge devices. Popular DNN frameworks include Tensorflow (TF) [123], Tensorflow Lite (TFL) [124], 
PyTorch [125], PyTorch mobile [126], Keras [127], Caffe2 [128], OpenCV [129], ONNX [130], and 
MXNet [131]. Some of these frameworks support a broad class of devices, such as android, iOS, or 
Linux systems. 

TFL was developed by Google and supports interfacing with many programming languages 
(such as Java, C++, Python). It can take a trained model from TensorFlow and apply model 
compression to reduce the amount of computations needed for inference. 

ONNX was developed by the PyTorch team to represent traditional machine learning and state-
of-the-art deep learning models [130]. The framework is interoperable across popular development 
tools, such as PyTorch, Caffe2, and Apache MXNet. Many of the current AI processors support the 
ONNX framework, such as Qualcomm SNPE, AMD, ARM, and Intel [132]. 

PyTorch mobile was developed by Facebook and allows a developer to train AI models for edge 
applications. The framework provides a node-to-node workflow that enables the clients to have a 
privacy-preserving learning environment via collaborative or federated learning [125,126]. It 
supports XNNPACK floating point kernel libraries for ARM CPUs and integrates QNNPACK for 
quantized INT8 kernels [126]. 

Caffe2 is a lightweight framework developed by Facebook [128]. This framework supports C++ 
and Python APIs, which are interchangeable and helps to develop prototypes quickly that could 
potentially be optimized later. Caffe2 integrates with Android Studio and Microsoft Visual Studio for 
mobile development [128]. Caffe2Go is developed to embed in mobile apps for applying a full-
fledged deep learning framework for real-time capture, analysis, and decision making without the 
help of a remote server [133]. 

Facebook uses Pytorch Mobile, Caffe2 and ONNX for developing their products. Pytorch is used 
for the experiment and rapid development, Caffe2 is developed for aiming at the production 
environment, while ONNX helps to share the models between the two frameworks [130]. 

MXNet is a fast and scalable framework developed by the Apache Software Foundation [131]. 
This framework supports both training and inference with a concise API for AI applications in edge 
devices. MXNet supports Python, R, C++, Julia, Perl, and many other languages and can be run on 
any processor platform for developing AI applications [131]. As shown in Table 4, TFL, ONNX, and 
Caffe2 are the most widely used frameworks for AI edge applications. 

Some edge processors are compatible only with their in-home frameworks. For example, 
Kalray's MPPA3 edge processor is compatible with KaNN (Kalray Neural Network), so any trained 
deep network must be converted to KaNN to run on the MPPA3 processor [13]. CEVA introduced its 
own software framework CEVA-DNN for converting pre-trained network models and weights from 
offline training frameworks (such as Caffe, TensorFlow) for inference applications on the CEVA 
processors [134–136]. CEVA added a retrain feature in CEVA-DNN for the Neuro-Pro processor to 
enable a deployed device to be updated without uploading a database to the server [134]. The 
developer can also use CEVA-DNN tools on a simulator or test device and then transfer the updated 
model to edge devices [136]. 

5. Framework for Spiking Neural Networks 

Spiking neural networks (SNN) utilize brain inspired computing primitives, where a neuron 
accumulates a potential and fires only when a threshold is crossed [137]. This means in spiking neural 
networks, the neurons have outputs sporadically. Thus, SNNs have much fewer neuron to neuron 
communications compared to deep neural networks, where all neurons always send outputs. The net 
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result of this is that SNNs can be dramatically more power efficient than DNNs and could potentially 
implement a task with far fewer operations. Thus, an SNN processor with the same operations per 
second capability as a DNN processor could theoretically have a much higher task level throughput. 

To get the highest efficiency from SNN processors, it is best to use algorithms that are developed 
from the ground up to use spiking neurons. Examples of such algorithms include constraint 
satisfaction problems [138] and genetic algorithms [139]. Several studies have examined how to 
implement DNNs using SNNs [140]. Davidson et al. [141] show through modeling of energies that 
this should not result in higher efficiency than the original DNN using the same underlying silicon 
technology. However, P. Blouw et al. [142] implemented keyword spotting on several hardware 
platforms and showed that the Loihi was about 5x more energy efficient than the Movidius deep 
learning processor. The remainder of this section describes some of the key frameworks for 
implementing SNN architectures for spiking neuromorphic processors. 

Nengo is a Python based framework developed by Applied Brain Research for spiking neurons. 
It supports multiple types of processors, including Loihi [143] and Spinnaker [144]. Nengo is very 
flexible in writing code and simulating SNNs. The core framework is the Nengo ecosystem, which 
includes Nengo objects and NumPy based simulators. The Nengo framework has Nengo GUI for 
model construction and visualization tools and NengoDL for simulating deep learning models using 
SNNs [145]. 

Meta-TF [146] is a framework developed by BrainChip for edge application in the Akida 
neuromorphic chips [147–149]. Meta-TF takes advantage of the Python scripting language and 
associated tools, such as Jupyter notebook and NumPy. Meta-TF includes three Python packages 
[146]: 1) The Akida Python package works as an interface to the Akida neuromorphic SoC. 2) the 
CNN2SNN tool provides an environment to convert a trained CNN network into SNNs. Brainchip 
embeds the on-chip training capability in the Akida processor, and thus, the developers can train 
SNNs on the Akida processor directly [149]. iii) Akida Model Zoo contains pre-created network 
models, which are built with the Akida sequential API and the CNN2SNN tool by using quantized 
Keras models. 

Lava is a framework currently being developed by Intel to build SNN models and map them to 
neuromorphic platforms [150]. The current version of the Lava framework supports the Loihi 
neuromorphic chips [9]. Lava includes Magma which helps to map and execute neural network 
models and sequential processes to neuromorphic hardware [150]. Magma also helps to estimate 
performance and energy consumption on the platform. Lava has additional properties, including 
offline training, integration with other frameworks, a Python interface, and being an open-source 
framework (with proper permissions). The Lava framework supports online real-time learning, 
where the framework adopts plasticity rules. However, the learning is constrained to access only 
locally available process information [150].  

6. Edge Processors 

At present, GPUs are the most popular platform for implementing DNNs. These, however, are 
usually not suitable for edge computing (except the NVIDIA Jetson systems) due to their high-power 
consumption. A large variety of AI hardware has been developed, many of which target edge 
applications. Several articles have reviewed AI hardware in broad categories, giving an overall idea 
of the current trend in AI accelerators [151–153]. Earlier works [2,154–156] have reviewed a small 
selection of older edge AI processors.  

This paper presents a very broad coverage of edge AI processors and PIM processors from the 
industry. This includes processors already released, processors that have been announced, and 
processors that have been published about in research venues (such as the ISSCC and the VLSI 
conferences). This section is divided into four subsections: subsection (i) describes dataflow 
processors, subsection (ii) describes neuromorphic processors, and subsection (iii) describes PIM 
processors. All of these sections describe industrial products that have been announced or released. 
Finally, subsection (iv) describes the processors in industrial research. 
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Table 2 describes the key hardware characteristics of the commercial edge-AI and PIM-AI 
processors. Table 3 lists the same key characteristics for the processors from industrial research. Table 
4 describes the key software/application characteristics of the processors in Table 2 . 

i. Dataflow Edge Processor 

This section describes the latest dataflow processors from the industry. Dataflow processors are 
custom designed for neural network inference and, in some cases, training computations. The 
processors are listed in alphabetical order based on the manufacturer name. The data provided is 
from the publications or websites of the processors. 

Apple released the bionic SoC A16 with an NPU unit for the iPhone 14 [157]. The A16 processor 
exhibits about 20% better performance with the same power consumption as their previous version, 
A15. It is embedded with a 6-core ARM8.6a CPU, 16-core NPU, and 8-core GPU [157]. The Apple M2 
processor was released in 2022 primarily for the Macbooks, and then optimized for iPads. This 
processor includes a 10-core GPU and 16-core NPU [158]. M1 performs 11 TOPS with 10 W of power 
consumption [159]. M2 has 18% and 35% more powerful CPU and GPU for faster computations. 

ARM recently announced the Ethos-N78 with an 8-core NPU for automotive applications [160]. 
Ethos-N78 is an upgraded version of Ethos-N77. Both NPUs support INT8 and INT16 precision. 
Ethos-N78 performs more than 2x better than the earlier version. The most significant improvement 
of Ethos-N78 is enabling a new data compression method that reduces the bandwidth and improves 
performance and energy efficiency [161]. 

Blaize released its Pathfinder P1600, El Cano AI inference processor. This processor integrates 
16 graph streaming processors (GSP) that deliver 16 TOPS at its peak performance [162]. It uses a 
dual Cortex-A53 for running the operating system at up to 1GHz. Blaize GSP processors integrate 
data pipelining and support up to INT-64 and FP-8-bit operations [163]. 

AIMotive [164] introduced the inference edge processor Apache5, which supports a wide range 
of DNN models. The system has an aiWare3p NPU with an energy efficiency of 2 TOPS/W. Apache5 
supports INT8 MAC and INT32 internal precision [165]. This processor is mainly targeted for 
autonomous vehicles [166].   

CEVA [134] released the Neupro-S on-device AI processor for computer vision applications. 
Neupro comprises two separate cores. One is the DSP-based Vector Processor Unit (VPU), and the 
other is the Neupro Engine. VPU is the controller, and the Neupro Engine does most of the computing 
work with INT8 or INT16 precision. A single processor performs up to 12.5 TOPS, while the 
performance can be scaled to 100 TOPS with multicore clusters [134,135]. The deep learning edge 
processors are mostly employed for inference tasks. CEVA added a retraining capability to its CDNN 
(CEVA DNN) framework for online learning on client devices [136]. 

Cadence introduced the Tensilica DNA 100, which is a comprehensive SoC for domain-specific 
on-device AI edge accelerators [167]. It has low, mid, and high-end AI products. Tensilica DNA 100 
offers 8 GOPS to 32 TOPS AI processing performance currently and predicts 100 TOPS in future 
releases [168]. The target application of the DNA 100 is IoTs, intelligent sensors, vision, and voice 
application. The mid and high-end applications include smart surveillance and autonomous vehicles, 
respectively. 

Table 2. Commercial Edge Processors with Operation Technology, Process Technology, and 
Numerical Precision. 

Compan
y 

Latest 
Chip 

Power 
(W) 

Proces
s (nm) 

Area 
(mm2) 

Precisio
n 

INT/FP 

Performa
nce 

(TOPS) 

E. Eff. 
(TOPS/

W) 

Architectu
re 

Refere
nce 

Apple M1 10 5 119 64 11 1.1 Dataflow [159] 

Apple A14 6 5 88 64 11 1.83 Dataflow [242] 

Apple A15 7 5  64 15.8 2.26 Dataflow [242] 

Apple A16 5.5 4  64 17 3 Dataflow [157] 
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*AIStor
m 

AIStorm 0.225   8 2.5 11 Dataflow [243] 

*AlphaI
C 

RAP-E 3   8 30 10 Dataflow [244] 

aiCTX 
Dynap-

CNN 
0.001 22 12 1 0.0002 0.2 

Neuromor
phic 

[15,213] 

*ARM Ethos78 1 5  16 10 10 Dataflow 
[160,16

1] 

*AIMoti
ve 

Apache5 
IEP 

0.8 16 121 8 1.6-32 2 Dataflow 
[164,16

5] 

*Blaize 
Pathfind

er, EI 
Cano 

6 14  64, FP-8, 
BF16 

16 2.7 Dataflow [162] 

*Bitman BM1880 2.5 28 93.52 8 2 0.8 Dataflow 
[245,24

6] 

*BrainC
hip 

Akida10
00 

2 28 225 1,2,4 1.5 0.75 
Neuromor

phic 
[147,14

8] 

*Cannan 
Kendrite 

K210 
2 28  8 1.5 1.25 Dataflow 

[247,24
8] 

*CEVA 
CEVA-

Neuro-S 
 16  2, 5, 8, 

12, 16 
12.7  Dataflow [134] 

*CEVA 
CEVA-
Neuro-

M 
0.83 16  2, 5, 8, 

12, 16 
20 24 Dataflow [135] 

*Cadenc
e 

DNA100 0.85 16  16 4.6 3 Dataflow 
[167,16

8] 

*Deepvi
sion 

ARA-1 1.7 28  8,16 4 2.35 Dataflow [169] 

*Deepvi
sion 

ARA-2  16     Dataflow [170] 

*Eta 
ECM353

2 0.01 55 25 8 0.001 0.1 Dataflow [249] 

*FlexLo
gic 

InferX 
X1 

13.5 7 54 8 7.65 0.57 Dataflow [250] 

*Google 
Edge 
TPU 

2 28 96 8, BF16 4 2 Dataflow 
[176,17

7] 

*Gyrfalc
on 

LightSp
eer 

2803S 
0.7 28 81 8 16.8 24 PIM [224] 

*Gyrfalc
on 

LightSp
eer 5801 

0.224 28 36 8 2.8 12.6 PIM [224] 

*Gyrfalc
on 

Janux 
GS31 

650/900 28 10457.5 8 2150 3.30 PIM [225] 
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*Green
Waves 

GAP9 0.05 22 12.25 
FP-

(8,16,32) 
0.05 1 Dataflow 

[180,18
1] 

*Horizo
n 

Journey 
3 

2.5 16  8 5 2 Dataflow [171] 

*Horizo
n 

Journey
5/5P 

30 16  8 128 4.8 Dataflow 
[172,17

3] 

*Hailo 
Hailo 8 

M2 
2.5 28 225 4,8,16 26 2.8 Dataflow 

[174,17
5] 

Intel Loihi 2 0.1 7 31 8 0.3 3 
Neuromor

phic 
[9] 

Intel Loihi 0.11 14 60 1-9 0.03 0.3 
Neuromor

phic 
[9,218] 

*Intel 
Intel® 

Movidiu
s 

2 16 71.928 16 4 2 Dataflow [186] 

IBM 
TrueNor

th 
0.065 28 430 8 0.0581 0.4 

Neuroorph
ic 

[10,218] 

IBM 
NorthPo

le 
74 12 800 2,4,8 

200 
(INT8) 

2.7 Dataflow 
[299,30

4] 

*Imagin
ation 

PowerV
R 

Series3N
X 

   FP-(8,16) 0.60  Dataflow 
[182,18

3] 

*Imagin
ation 

IMG 
4NX 
MC1 

0.417   4,16 12.5 30 Dataflow [184] 

*Imec DIANA  22 10.244 2 
29.5 (A), 
0.14 (D) 

14.4 
PIM+Digit

al 
[222,22

3] 

*Kalray MPPA3 15 16  8,16 255 1.67 Dataflow [13] 

*Kneron 
KL720 

AI 
1.56 28 81 8,16 1.4 0.9 Dataflow [191] 

*Kneron KL530 0.5   8 1 2 Dataflow [192] 

*Koniku 
Konicor

e 
      

Neuromor
phic 

[12] 

*LeapMi
nd 

Efficiera 0.237 12 0.422 
1,2,4,8,16

,32 
6.55 27.7 Datalow [21] 

Memryx MX3 1 -- -- 
4,8,16 

(W) 
BF16 

5 5 Dataflow [297] 

*Mythic M1108 4  361 8 35 8.75 PIM [89] 

*Mythic M1076 3 40 294.5 8 25 8.34 PIM 
[18,88,9

0] 
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*mobile
Eye 

EyeQ5 10 7 45 4,8 24 2.4 Dataflow 
[193–
195] 

*mobile
Eye 

EyeQ6 40 7  4,8 128 3.2 Dataflow [196] 

*Mediat
ek 

i350  14   0.45  Dataflow [251] 

*NVIDI
A 

Jetson 
Nano 

B01  
10 20 118 FP16 1.88 0.188 Dataflow [197] 

NVIDIA 
AGX 
Orin 

60 7 -- 8 275 3.33 Dataflow [199] 

*NXP 
 i.MX 

8M+ 
 14 196 FP16 2.3  Dataflow [86,87] 

*NXP i.MX9 4x10-6 12     Dataflow [85] 

*Perceiv
e 

Ergo 0.073 5 49 8 4 55 Dataflow [252] 

TSU & 
Polar 
Bear 
Tech 

QM930   12 12 1089 4,8,16 20 (INT8) 1.67 Dataflow [302] 

Qualco
mm 

QCS825
0 

 7 157.48 8 15  Dataflow 
[200,20

1] 

Qualco
mm 

Snapdra
gon 888+ 

5 5  FP32 32 6.4 Dataflow 
[202–
204] 

Qualco
mm 

Snapdra
gon 8 
Gen2 

 4  
4,8,16, 

FP16 
51  Dataflow [303] 

*RockCh
ip 

rk3399P
ro 

3 28 729 8, 16 3 1 Dataflow [253] 

Rokid 
Amlogic 

A311D 
 12   5  Dataflow [254] 

Samsun
g 

Exynos 
2100 

 5   26  Dataflow 
[205,20

6] 

Samsun
g 

Exynos 
2200 

 4  
8,16, 
FP16 

  Dataflow [255] 

Samsun
g 

HBM-
PIM 

0.9 20 46.88  1.2 1.34 PIM 
[226,22

7] 

Sima..ai MLSoC 10 16 175.55 8 50 5 Dataflow 
[300,30

1] 

Synopsi
s 

EV7x  16  8, 12, 16, 2.7  Dataflow 
[209,21

0] 

*Syntian
t 

NDP100 0.00014 40 2.52  0.000256 20 PIM 
[228,22

9] 
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*Syntian
t 

NDP101 0.0002 40 25 1,2, 4,8 0.004 20 PIM 
[228,23

1] 

*Syntian
t 

NDP102 0.0001 40 4.2921 1, 2, 4, 8 0.003 20 PIM 
[228,23

5] 

*Syntian
t 

NDP120 0.0005 40 7.75 1,2,4,8 0.0019   3.8 PIM 
[228,23

4] 

*Syntian
t 

NDP200 0.001 40  1,2,4,8 0.0064 6.4 PIM 
[228,23

2] 

Think 
Silicon 

NEMA®
|pico XS 

0.0003 28 0.11 FP16,32 0.0018 6 Dataflow [256] 

Tesla/Sa
msung 

FSD 
Chip 

36 14 260 8, FP-8 73.72 2.04 Dataflow [211] 

Videntis TEMPO       
Neuromor

phic 
[11] 

          

Verisilic
on 

VIP9000  16  16, FP16 0.5-100  Dataflow 
[207,20

8] 

Untethe
r 

TsunAI
mi 

400 16  8 2008 8 PIM 
[236,23

7] 

UPMEM 
UPMEM

-PIM 
700 20  32, 64 0.149  PIM 

[238–
241] 

*Processors are available for purchase. **Integer Precision is indicated by only precision number(s). Floating 
point precision is mentioned as FP in the precision column. 

Deepvision has updated their edge inference coprocessor ARA-1 for applications to autonomous 
vehicles and smart industries [46. It includes eight compute engines with 4 TOPS and consumes 1.7-
2.3 W of power [169]. The computing engine supports INT8 and INT16 precision. Deepvision has 
recently announced its second-generation inference engine, ARA-2, which will be released later in 
2022 [170]. The newer version will support LSTM and RNN neural networks in addition to the 
networks supported in ARA-1. 

Horizon announced its next automotive AI inference processor Journey 5/5P [171], which is the 
updated version of Journey 3. The mass production of Journey 5 will be starting in 2022. The 
processor exhibits a performance of 128 TOPS, and has a power of 30 W, giving an energy efficiency 
of 4.3 TOPS/W [172,173]. 

Hailo released its Hailo-8 M-2 SoC for various edge applications [174]. The computing engine 
supports INT8 and INT16 precision. This inference engine is capable of 26 TOPS and requires 2.5 W 
of power. The processor can be employed as a standalone or coprocessor [175]. 

Google introduced its Coral Edge TPU, which comprises only 29% of the floorpan of the original 
TPU for edge applications [176]. The Coral TPU shows high energy efficiency in DNN computations 
compared to the original TPUs which are used in cloud inference applications [178]. Coral Edge TPU 
supports INT8 precision and can perform 4 TOPS with 2 Watts of power consumption [176]. 

Google released its Tensor processor for mobile applications, coming with its recent Pixel series 
mobile phone [179]. Tensor is an 8-core cortex CPU chipset fabricated with 5 nm process technology. 
The processor has a 20-core Mali-G78 MP20 GPU with 2170 GFLOPS computing speed. The processor 
has a built-in NPU to accelerate AI models with a performance of 5.7 TOPS. The maximum power 
consumption of the processor is 10W. 

GreenWaves announced their edge inference chip GAP9 [180]. It is a very low-cost, low-power 
device that consumes 50 mW and performs 50 GOPS at its peak. GAP9 provides hearable 
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developments through DSP, AI accelerator, and ultra-low latency audio streaming on IoT devices. 
GAP9 supports a wide range of computing precision, such as INT8, 16, 24, 32, and FP16, 32 [181]. 

IBM introduced the NorthPole [299], a non-Von Neumann deep learning inference engine, at the 
HotChips 2023 conference. The processor shows massive parallelism with 256 cores. Each core has 
768KB of near-compute memory to store weights, activations, and programs. The total on-chip 
memory capacity is 192 MB. The NorthPole processor does not use off-chip memory to load weights 
or store intermediate values during deep learning computations. Thus, it dramatically improves 
latency, throughput, and energy consumption, which helps outperform existing commercial deep 
learning processors. The external host processor works on three commands: write tensor, run 
network, and read tensor. The NorthPole processor follows a set of pre-scheduled deterministic 
operations in the core array. It is implemented in 12nm technology and has 22 billion transistors 
taking up 800 mm2 of chip area. The performance data released on the NothPole processor are 
computed based on frame/sec. The performance metrics of operations/sec in integer or floating point 
are unavailable in the public domain currently. However, the operation per cycle is available for 
different data precisions. In vector-matrix multiplication, 8, 4, and 2-bit can perform 2048, 4096, and 
8192 operations/cycles. The FP16 can compute 256 operations/cycle (the number of cycles/s is not 
released at this time). NorthPole can compute 800, 400, and 200 TOPS with INT 2, 4, and 8 precision. 
The processor can be applied to a broad area of applications and can execute inference with a wide 
range of network models applied in classification, detection, segmentation, speech recognition, and 
transformer models in NLP. 

Imagination introduced a wide range of edge processors with targeted applications in IoTs to 
autonomous vehicles [182]. The edge processor series is categorized as the PowerVR Series3NX and 
can achieve up to 160 TOPS with multicore implementations. For ultra-low power applications, one 
can choose PowerVR AX3125, which has a 0.6 TOPS computing performance [183]. IMG 4NX MC1 is 
a single-core Series 4 processor for autonomous vehicle applications and performs at 12.5 TOPS with 
less than 0.5 W of power consumption [184]. 

Intel released multiple edge AI processors such as Nirvana Spring Crest NNP-I [185] and 
Movidious [186]. Recently, they have announced a scaleable 4th generation Xeon processor series 
that can be used for desktop to extreme edge devices [187]. The power consumption for an ultra-
mobile processor is around 9W while computed with INT8 precision. The development utilizes the 
SuperFin fabrication technology with 10nm process technology. Intel is comparing its core 
architecture to the Skylake processor, and it claims an efficient core achieves 40% better performance 
with 40% less power. 

IBM developed the Artificial Intelligence Unit (AIU) based on their AI accelerator used in the 7-
nanometer Telum chip that powers its z16 system [188]. AIU is a scaled version developed on a 5 nm 
process technology and features a 32-core design with a total of 23 billion transistors. AIU uses IBM’s 
approximate computing frameworks where the computing executes with FP16 and FP32 precisions 
[189]. 

Leapmind has introduced the Efficiera for edge AI inference implemented in FPGA or ASIC [21]. 
Efficiency is for ultra-low power applications. The computations are typically performed in 8-, 16-, 
or 32-bit precision. However, the company claims that 1-bit weight and 2-bit activation can be 
achieved while still maintaining accuracy for better power and area efficiency. They show 6.55 TOPS 
at 800MHz clock frequency with an energy efficiency of 27.7 TOPS/W [190]. 

Kneron released its edge inference processor, KL 720, for various applications, such as 
autonomous vehicles and smart industry [191]. The KL 720 is an upgraded version of the earlier KL 
520 for similar applications. The revised version performs at 0.9 TOPS/W and shows up to 1.4 TOPS. 
The neural computation supports INT8 and INT16 precisions [191]. Kneron's most up-to-date 
heterogeneous AI chip is KL 530 [192]. It is enabled with a brand new NPU, which supports INT4 
precision and offers 70% higher performance than that of INT8. The maximum power consumption 
of KL 530 is 500 mW and can deliver up to 1 TOPS [192]. 
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Table 3. Processors, Supported Neural Network Models, Deep Learning Frameworks, And 
Application Domains. 

Company Product  
Supported Neural 

Networks 
Supported 

Frameworks 
Application/benefits 

Apple Apple A14 DNN  TFL iPhone12 series 

Apple Apple A15 DNN  TFL iPhone13 series 

aiCTX-
Synsense 

Dynap-CNN 
CNN, RNN, 

Reservoir 
Computing 

SNN 
High-speed aircraft, IoT, 

security, healthcare, mobile 

ARM Ethos78 CNN and RNN 
TF, 

TFL,Caffe2,PyTorch, 
MXNet, ONNX 

Automotive 

AIMotive Apache5 IEP 

GoogleNet, VGG16, 
19, Inception-v4, v2, 

MobileNet v1, 
ResNet50, Yolo v2 

Caffe2 

Automotives, pedestrian 
detection, vehicle 

detection, lane detection, 
driver status monitoring 

Blaize EI Cano CNN, YOLO v3 TFL 
Fit for industrial, retail, 

smart-city, and computer-
vision systems  

BrainChip Akida1000 
CNN in SNN, 

Mobilenet 
MetaTF 

Online learning, data 
analytics, security 

BrainChip 
AKD500, 

1500, 2000 
DNN MetaTF 

Smart home, Smart health, 
Smart City and smart 

transportation 

CEVA Neuro-s CNN, RNN TFL 
IoTs, smartphones, 

surveillance, automotive, 
robotics, medical  

Cadence 
Tensilica 
DNA100 

FCC, CNN, LSTM 
ONNX, Caffe2, 

TensorFlow 

IoT, smartphones, AR/VR, 
smart surveillance, 

Autonomous vehicle 

Deepvision ARA-1 

Deep Lab V3, 
Resnet-50, Resnet-

152, MobileNet-SSD, 
YOLO V3, UNET 

Caffe2, TFL, MXNET, 
PyTorch 

Smart retail, robotics, 
industrial automation, 

smart cities, autonomous 
vehicles, and more 

 Deepvision ARA-2 
 Model in ARA-1 
and LSTM, RNN,  

 TFL, Pytorch 
Smart retail, robotics, 

industrial automation, 
smart cities,  

Eta  ECM3532 CNN, GRU, LSTM  --- 
Smart home, consumer 

products, medical, 
logistics, smart industry 
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Gyrfalcon  
LightSpeer 

2803S 
CNN based, VGG, 

ResNet, MobileNet;  
TFL, Caffe2 

High performance audio 
and video processing  

Gyrfalcon  
LightSpeer 

5801 

CNN based, ResNet, 
MobileNet and 

VGG16,  

TFL, PyTorch & 
Caffe2  

Object Detection and 
Tracking, 

NLP, Visual Analysis  

Gyrfalcon 
Edge Server 

Janux GS31 
VGG, REsNet, 

MobileNet 
TFL, Caffe2, PyTorch  

Smart cities, surveillance, 
object detection, 

recognition  

GreenWaves GAP9 CNN, mobileNet v1   DSP application 

Horizon Journey 3 
CNN, mobilenet v2, 

efficient net  
TFL, Pytorch, ONNX, 

mxnet, Caffe2 
Automotive 

Horizon Journey5/5P 

Resnet18, 50, 
MobileNet v1-v2, 

ShuffleNetv2, 
EfficientNet 

FasterRCNN, 
Yolov3 

TFL, Pytorch, ONNX, 
mxnet, Caffe2 

Automotive 

Hailo Hailo 8 M2 

YOLO 3, YOLOv4, 
CenterPose, 

CenterNet, ResNet-
50  

ONNX, TFL Edge vision applications 

Intel  Loihi 2 SNN based NN Lava, TFL, Pytorch 
Online learning, sensing, 

robotics, healthcare 

Intel Loihi SNN based NN Nengo 
Online learning, robotics, 

healthcare and many more 

Imagination 
PowerVR 

Series3NX 
Mobilenet v3, CNN Caffe, TFL 

smartphones, smart 
cameras, drones, 

automotives, wearables,  

Imec & GF DIANA DNN  TFL, Pytorch 
Analog computing in Edge 

inference 

KoniKu Konicore 
synthetic 

Biology+Silicon 
 -- 

 Chemical detection, 
aviation, security 

Kalray MPPA3 
Deep network 

converted to KaNN 
Kalray's KANN  

Autonomous vehicles, 
surveillance, robotics, 

industry, 5G  

Kneron KL720 AI CNN, RNN, LSTM 
ONNX, TFL, Keras, 

Caffe2 

wide applications from 
automotive to home 

appliances  
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 Kneron KL520 

Vgg16, Resnet, 
GoogleNet, YOLO, 
Lenet, MobileNet, 

FCC 

ONNX, TFL, Keras, 
Caffe2 

 Automotive, home, 
industry and so on.  

LeapMind Efficiera 
CNN, YOLO v3, 

Mobilenet-v2, Lmnet 
 Blueoil, Python & C++ 

API 

 Home, Industrial 
machinery, surveillance 

camera, robots 

Memryx MX3 CNN 
Pytorh, ONNX, TF, 

Keras 
Automation, surveillance, 

agriculture, financial 

Mythic M1108 
CNN, large complex 

DNN, Resnet50, 
YOLO v3, Body25 

Pytorch, TFL, and 
ONNX  

Machine Vision, 
Electronics, Smart Home, 
UAV/Drone, Edge Server 

Mythic M1076 
CNN, Complex 

DNN, Resnet50, 
YOLO v3 

Pytorch, TFL, and 
ONNX  

Surveillance, Vision, voice, 
Smart Home, UAV, Edge 

Server 

MobileEye EyeQ5 DNN   Autonomous driving 

 MobileEye EyeQ6  DNN   Autonomous driving 

Mediatek i350 DNN TFL 
Vision and voice, Biotech 

and Bio-metric 
measurements 

NXP  i.MX 8M+ DNN TFL, Arm NN, ONNX Edge Vision 

NXP i.MX9 CNN, Mobilenet v1 TFL, Arm NN, ONNX 
Graphics, image, display, 

audio 

NVIDIA AGX Orin DNN 
TF, TFL, Caffe, 

Pytorch 
Robotics, Retail, Traffic, 

Manufacturing 

Qualcomm QCS8250 CNN, GAN, RNN TFL 
smartphone, tablet, 

support 5G, video and 
image processing 

Qualcomm 
Snapdragon 

888+ 
DNN TFL 

Smartphone, tablet, 5G, 
gaming, video upscaling, 

image & video processing, 

RockChip rk3399Pro 
VGG16, ResNEt50, 

Inception4 
TFL, Caffe, mxnet, 

ONNX, darknet 

Smart Home, City, and 
Industry; face recognition, 

driving monitoring, 

Rokid 
Amlogic 

A311D 
Inception V3, 

YoloV2, YOLOV3 
TFL, Caffe2 Darknet 

 High-performance 
multimedia 

Samsung Exynos 2100 CNN TFL 
Smartphone, tablet, 

advanced image signal 
processing (ISP), 5G  

Samsung HBM-PIM 
DNN see youtube to 

write on int 
 Pytorch, TFL 

 Supercomputer and AI 
application 
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Synopsis EV7x CNN, RNN, LSTM 
OpenCV, OpenVX 

and OpenCL C, TFL, 
Caffe2  

Robotics, autopilot car, 
vision, SLAM, and DSP 

algorithms 

Syntiant  NDP100 DNN  TFL 
Mobile phones, hearing 

equipment, smartwatches, 
IoT, remote controls  

 Syntiant NDP101 
CNN, RNN, GRU, 

LSTM 
 TFL 

Mobile phones, smart 
homes, remote controls, 

smartwatches, IoT  

 Syntiant NDP102 
CNN, RNN, GRU, 

LSTM 
 TFL 

Mobile phones, smart 
homes, remote controls, 

smartwatches, IoT  

 Syntiant NDP120 
CNN, RNN, GRU, 

LSTM 
 TFL 

Mobile phones, smart 
home, wearables, PC, IoT 

endpoints, media 
streamers, AR/VR 

 Syntiant NDP200 
FC, Conv, DSConv, 

RNN-GRU, LSTM 
 TFL 

Mobile phones, smart 
homes, security cameras, 

video doorbells 

Think Silicon 
Nema 

PicoXS  
DNN  ---- 

Wearable and embedded 
devices 

Tesla FSD CNN  Pytorch Automotive 

Verisilicon VIP9000 All modern DNN 
TF, Pytorch, TFL, 
DarkNet, ONNX 

Can perform as intelligent 
eye and intelligent ear at 

the edge  

Untether TsunAImi 
 DNN, ResNet-50, 
Yolo, Unet, RNN, 

BERT, TCNs, LSTMs 
 TFL, Pytorch 

NLP, Inference at the edge 
server or data center 

UPMEM 
UPMEM-

PIM 
DNN  ----- 

Sequence alignment: DNA 
or protein; Genome 

assembly: Metagenomic 
analysis 

Memryx [297] released an inference processor, MX3. This processor computes deep learning 
models with 4, 8, or 16 bit weight and BF16 activation functions. MX3 consumes about 1 W of power 
and computes with 5 TFLOPS. This chip stores 10 million parameters on a die, and thus needs more 
chips for implementing larger networks. 

MobileEye and STMicroelectronics released EyeQ 5 SoC for autonomous driving [193]. EyeQ 5 
is 4 times faster than their earlier version, EyeQ 4. It can produce 2.4 TOPS/W and goes up to 24 TOPS 
with 10 W of power [194]. Recently, MobileEye has announced their next generation processor, 
EyeQ6, which is around 5x faster than EyeQ5 [195]. For INT8 precision, EyeQ5 performs 16 TOPS, 
and EyeQ6 shows 34 TOPS [196]. 

NXP introduced their edge processor i.MX 8M+ for the targeted applications in vision, 
multimedia, and industrial automations [86]. The system includes a powerful Cortex-A53 processor 
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integrated with an NPU. The neural network performs 2.3 TOPS with 2W of power consumption. 
The neural computation supports INT16 precision [87]. NXP is scheduled to launch its next AI 
processor, iMX9, in 2023 with more features and efficiency [85]. 

NVIDIA released the Jetson Nano, which is able to run multiple applications in parallel, such as 
image classification, object detection, segmentation, and speech processing [197]. This developer kit 
is supported by the NVIDIA JetPack SDK and is able to run state-of-the-art AI models. The Jetson 
Nano consumes around 5-10 W of power and computes 472 GFLOPS in FP16 precision. The new 
version of Jetson Nano B01 can perform 1.88 TOPS 198]. 

NVIDIA released Jetson Orin, which includes specialized development hardware, AGX Orin. It 
is embedded with 32GB of memory, has a 12-core CPU, and can exhibit a computing performance of 
275 TOPS while using INT8 precision [199]. The computing is powered by NVIDIA ampere 
architecture with 2048 cores, 64 tensor cores, and 2 NVDLA v2.0 accelerators for deep learning [199]. 

Qualcomm developed the QCS8250 SoC for intensive camera and edge applications [200]. This 
processor supports wifi and 5G for the IoTs. A quad hexagon vector extension V66Q with hexagon 
DSP is used for machine learning. An integrated NPU is used for advanced video analysis. The NPU 
supports INT8 precision and runs at 15 TOPS [201]. Qualcomm has released the Snapdragon 888+ 5G 
processor for use in smartphones. It takes the smartphone experience to a new level with AI-
enhanced gaming, streaming, and photography [202]. It includes a 6th generation Qualcomm AI 
engine with the Qualcomm Hexagon780 CPU [203,204]. The throughput of the AI engine is 32 TOPS 
with 5 W of power consumption [203]. The Snapdragon 8 Gen2 mobile platform was presented at the 
HotChips 2023 conference and exhibited 60% better energy efficiency than the Snapdragon 8 in INT4 
precision. 

Samsung announced the Exynos 2100 AI edge processor for smartphones, smartwatches, and 
automobiles [205]. Exynos supports 5G network and performs on-device AI computations with triple 
NPUs. They fabricate using 5nm extreme UV technology. The Exynos 2100 consumes 20% lower 
power and delivers 10% higher performance than Exynos 990. Exynos 2100 can perform up to 26 
TOPS, and it is 2 times more power efficient than the earlier version of Exynos [206]. A more powerful 
mobile processor, Exynos 2200, was released recently. 

SiMa.ai [300] introduced the MLSoC for computer vision applications. MLSoc is implemented 
on TSMC 16nm technology. The accelerator can compute 50 TOPS while consuming 10 W of power. 
MLSoC uses INT8 precision in computation. The processor has 4 MB of on-chip memory for the deep 
learning operations. The processor is 1.4x more efficient than Orin, measured in frames/W. 

Tsinghua and Polar Bear Tech released their QM930 accelerator consisting of seven chiplets. The 
chiplets are organized as one hub chiplet and six side chiplets, forming a Hub-Side processor. The 
processor is implemented in 12nm CMOS technology. The total area for the chiplets is 209 mm2 for 
seven chiplets. However, the total substrate area of the processor is 1089 mm2. The processor can 
compute with INT4, INT8, and INT16 precision, showing peak performances of 40, 20, and 10 TOPS, 
respectively. The system energy efficiency is 1.67 TOPS/W while computed in INT8. The power 
consumption can be varied from 4.5 to 12 W. 

Verisilicon brought VIP 9000 for face and voice recognition. It adopts Vivante's latest VIP V8 
NPU architecture for processing neural networks [207]. The computing engine supports INT8, INT16, 
FP16, and BF16. The performance can be scaled from 0.5 to 100 TOPS [208]. 

Synopsis developed the EV7x multi-core processor family for vision applications [209]. The 
processor integrates vector DSP, vector FPU, and a neural network accelerator. Each VPU supports a 
32-bit scalar unit. The MAC can be configured for INT8, INT16, or INT32 precisions. The chip can 
achieve up to 2.7 TOPS in performance [210]. 

Tesla designed the FSD processor which was manufactured by Samsung for autonomous vehicle 
operations [211]. The SoC processor includes 2 NPUs and one GPU. The NPUs support INT8 
precision, and each NPU can compute 36.86 TOPS. The peak performance of the FSD chip is 73.7 
TOPS. The total TDP power consumption of each FSD chip is 36 W [211]. 

Several other companies have also developed edge processors for various applications but did 
not share hardware performance details on their websites or through publicly available publications. 
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For instance, Ambarella [307] has developed various edge processors for automotive, security, 
consumer, and IoTs for industrial and robotics applications. Ambarella’s processors are SoC types, 
mainly using ARM processors and GPUs for DNN computations. 

ii. Neuromorphic Edge AI Processor 

In 2022, the global market value of neuromorphic chips was 3.7 billion, and by 2028, the 
estimated market value is projected to be $ 27.85 Billion [212]. The neuromorphic processors 
described in this section utilize spike-based processing. 

Synsense (formerly AICTx) has introduced a line of ultra-low power neuromorphic processors: 
DYNAP-CNN, XYLO, DYNAP-SE2, and DYNAP-SEL [15]. Of these, we were able to find 
performance information on only the DYNAP-CNN chip. This processor is fabricated on a 22 nm 
process technology and has a die area of 12 mm2. Each chip can implement up to a million spiking 
neurons, and a collection of DYNAP-CNN chips can be utilized to implement a larger CNN 
architecture. The chip utilizes asynchronous processing circuits [213]. 

BrainChip introduced the Akida line of spiking processors. The AKD1000 has 80 NPUs, 3 
pJ/synaptic operation, and around 2 W of power consumption [147]. Each NPU consists of eight 
neural processing engines that run simultaneously and control convolution, pooling, and activation 
(ReLu) operations [148]. Convolution is normally carried out in INT8 precision, but it can be 
programmed for INT 1, 2, 3 or 4 precisions while sacrificing 1-3% accuracy. BrainChip has announced 
future releases of smaller and larger Akida processors under the AKD500, AKD1500, and AKD2000 
labels [148]. A trained DNN network can be converted to SNN by using the CNN2SNN tool in the 
Meta-TF framework for loading a model into an Akida processor. This processor also has on-chip 
training capability, thus allowing the training of SNNs from scratch by using the Meta-TF framework 
[146]. 

GrAI Matters Lab (GML) developed and optimized a neuromorphic SoC processor named as 
VIP for computer vision application. VIP is a low power and low latency AI processor, with 5-10 W 
of power consumption, and the latency is 10x less than the NVIDIA nano [214]. The target 
applications are for audio/video processing on the end devices. 

IBM developed the TrueNorth neuromorphic spiking system for real-time tracking, 
identification, and detection [10]. It consists of 4096 neurosynaptic cores and 1 million digital neurons. 
The typical power consumption is 65 mW, and the processor can execute 46 GSOPS/W, with 26 pJ 
per synaptic operation [10,215]. The total area of the chip is 430 mm2, which is almost 14x bigger than 
that of Intel’s Loihi 2. 

Innatera announced a neuromorphic chip that is fabricated using TSMC’s 28 nm process [216]. 
When tested with audio signals [217], each spike event consumed about 200 fJ, while the chip 
consumed only 100 uW for each inference event. The target application areas are mainly audio, 
healthcare, and radar voice recognition [217]. 

Intel released the Loihi [9], a spiking neural network chip in 2018, and an updated version, the 
Loihi 2 [9], in 2021. The Loihi 2 is fabricated using Intel’s 7nm technology and has 2.3 billion 
transistors with a chip area of 31mm2. This processor has 128 neuron cores and 6 low power x86 cores. 
It can evaluate up to 1 million neurons and 120 million synapses. The Loihi chips support online 
learning. Loihi processors support INT8 precision. Loihi 1 can deliver 30 GSOPS with 15 pJ per 
synaptic operation [218]. Both Loihi 1 and Loihi 2 consume similar amounts of power (110mW and 
100mW, respectively [219]). However, the Loihi 2 outperforms the Loihi 1 by 10 times. The chips can 
be programmed through several frameworks, including, Nengo, NxSDK, and Lava [150]. The latter 
is a framework developed by Intel and is being pushed as the primary platform to program the Loihi 
2. 

IMEC develops a RISC-V processor based digital neuromorphic processor with 22nm process 
technology in 2022 [220]. They have implemented an optimized BF-16 processing pipeline inside the 
neural process engine. The computation can also support INT4 and INT8 precision. They have used 
3-layer memory to reduce the chip area. 

Koniku combines biological machines with silicon devices to design a micro electrode array 
system core [12]. They are developing the hardware and algorithm that mimics the smell sensory 
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receptor that is found in some animal noses. However, the detailed device parameters are not 
publicly available. The device is mainly used in security, agriculture, and safe flight operation [221].  

iii. PIM Processor 

PIM processors are becoming an alternative for AI application due to the low latency, high 
energy efficiency, and reduced memory requirements. PIMs are the analog, and in-place computing 
architecture thus, it reduces the burden of additional storage modules. However, there are some 
digital presents the schematic representation of a common PIM computing architecture. It consists of 
the crossbar array (NxM) of the popular storage devices. The crossbar array performs as the weight 
storage and analog multiplier. The storage devices could be SRAM, RRAM, PCM, STT-MRAM or a 
flash memory cell. The computing array is equipped with the peripheral circuits, a data converter 
(ADC or DAC), sensing circuits, and a write circuit for the crossbar. Some of the PIM processors are 
discussed in this section. 

Imec and GlobalFoundries have developed DIANA, a processor that includes both digital and 
analog cores for DNN processing. The digital core is employed for widely parallel computation, 
whereas the analog in-memory computing (AiMC) core enables much higher energy efficiency and 
throughput. The core uses a 6T-SRAM array with a size of 1152x512. Imec developed the architecture, 
while the chip is fabricated using GlobalFoundries' 22FDX solution [222]. It is targeted for a wide 
range of edge applications, from smart speakers to self-driving vehicles. The analog component 
(AiMC) computes at 29.5 TOPS with and the digital core computes at 0.14 TOPS. The digital and 
analog components have efficiencies of 4.1 TOPS/W and 410 TOPS/W, respectively in isolation. The 
overall system energy efficiency of DIANA is 14.4 TOPS/W for Cifar-10 [223]. 

Gyrfalcon has developed multiple PIM processors, including the Lightspeeur 5801, 2801, 2802, 
and 2803 [24]. The architecture uses digital AI processing in-memory units that compute a series of 
matrices for CNN. The Lightspeeur 5801 has a performance of 2.8 TOPS at 224 mW and can be scaled 
up to 12.6 TOPS/W. The Lightspeeur 2803S is their latest PIM processor for the advanced edge, 
desktop, and data center deployments [19]. Each Lightspeeur 2803S chip performs 16.8 TOPS while 
consuming 0.7W of power, giving an efficiency of 24 TOPS/W. Lightspeeur 2801 can compute 5.6 
TOPS with an energy efficiency of 9.3 TOPS/W. Gyrfalcon introduced its latest processor, Lightspeeur 
2802, using TSMC’s magnetoresistive random access memory technology. Lightspeeur 2802 exhibits 
an energy efficiency of 9.9 TOPS/W. Janux GS31 is the edge inference server which is built with 128 
Lightspeeur 2803S chips [225]. It can perform 2150 TOPS and consumes 650 W. 

Mythic has announced its new analog matrix processor, M1076 [18]. The latest version of 
Mythic’s PIM processor reduced its size by combining 76 analog computing tiles, while the original 
one (M1108) uses 108 tiles. The smaller size offers more compatibility to implant on edge devices. The 
processor supports 79.69M on-chip weights in the array of flash memory, and 19,456 ADCs for 
parallel processing. There is no external DRAM storage required. The DNN models are quantized 
from FP32 to INT8 and retrained in Mythic’s analog compute engine. A single M1076 chip can deliver 
up to 25 TOPS while consuming 3 W of power [90]. The system can be scaled for high performance 
up to 400 TOPS by combining 16 of M1076 chips which requires 75 W [88,89]. 

Samsung has announced its HBM-PIM machine learning-enabled memory system with PIM 
architecture [16]. This is the first successful integration of the PIM architecture of high bandwidth 
memory. This technology incorporates the AI processing function into Samsung HBM2 Aquabolt to 
speed up high-speed data processing in supercomputers. The system delivered 2.5x performance 
with 60% lower energy consumption than the earlier HBM1 [16]. Samsung LPDDR5-PIM memory 
technology for mobile device technology is targeted to bring the AI capability in the mobile device 
without connecting to the data center [226]. The HBM-PIM architecture is different from the 
traditional analog PIM architecture as outlined in Figure 2. It does not require data-conversion and 
sensing circuits as the actual computation is taking place in the near-computing module in the digital 
domain. Instead, it places a GPU surrounded by HBM stacks to realize the parallel processing and 
minimize data movement [227]. Therefore, this is similar to a dataflow processor 
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Figure 2. Schematic representation of a Processing in Memory macro system. 

Syntiant has developed a line of flash-memory array based edge inference processors, such as 
NDP10x, NDP120, NDP200 [228]. Syntiant's PIM architecture is very energy efficient, and it combines 
with an edge optimized training pipeline. A Cortex-M0 is embedded in the system that runs the NDP 
firmware. The NDP10x processors can hold 560k weights of INT4 precision and perform MAC 
operation with an INT8 activation. The training pipeline can build neural networks for various 
applications according to the specifications with optimized latency, memory size, and power 
consumption [228]. Syntiant released five different versions of application processors. NDP 100 is 
their first AI processor, updated in 2020 with a tiny little dimension of 2.52 mm2 and ultra-low power 
consumption, less than 140 μW [229]. Syntiant continues to provide more PIM processors named 
NDP 101, 102, 120, and NDP 200 [230–232]. The application domains are mainly smartphone, 
wearable, and hearable pieces of equipment, remote controls, IoT endpoints. The neural 
computations are supported by INT 1, 2, 4, and 8 precision. The energy efficiency of the NDP 10x 
series is 2 TOPS/W [233], which includes NDP100, NDP 101, and NDP 102. NDP 120 [235] and NDP 
200 exhibit 1.9 GOPS/W and 6.4 GOPS/W [232], respectively. 

Untether has developed its PIM AI accelerator card TsunAImi [236] for inference at the data 
center or in the server. The heart of the TsunAImi is four runAI200 chips which are fabricated by 
TSMC in standard SRAM arrays. Each runAI200 chip features 511 cores and 192MB of SRAM 
memory. runAI200 computes in INT8 precision and performs 502 TOPS at 8 TOPS/W, which is 3x 
more than NVIDIA’s Ampere A100 GPU. The resulting performance of TsunAImi system is 2008 
TOPS with 400 W [237]. 

UPMEMP PIM innovatively placed thousands of DPU units within the DRAM memory chips 
[238]. The DPUs are controlled by high-level applications running on the main CPU. Each DIMM 
consists of 16 PIM-enabled chips. Each PIM has 8 DPUs, making 128 DPUs of total DPUs for each 
UPMEM [239]. 

However, the system is massively parallel, and up to 2560 DPUs units can be assembled as a 
unit server with 256 GB PIM DRAM. The computing power is 15x of x86 server with the main CPU. 
The throughput is benchmarked for INT32 bit addition is 58.3 MOPS/DPU [240]. This system is 
suitable for DNA sequencing, Genome comparison; Phylogenetics; Metagenomic analysis, and more 
[241].  
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iv. Processor in the Industrial Research 

The PIM computing paradigm is still in its rudimentary stage, however a very promising system 
for efficient MAC operation and low power edge application. A good number of industries and 
industry-academic research collaborations are escalating the development of PIM technologies and 
architectures. In this section, the PIM processors in the industrial and industry-university 
collaboration have been briefly discussed. The recent developments of the PIM research are tabulated 
in Table 4. 

Table 4. Edge Processors in Industrial Research with Technology, Process Technology, and Numerical 
Precision. 

Research 
Group 

Name 
Power 

(W) 

Proce
ss 

(nm) 

Area 
(mm

2) 

Precision 
INT/FP* 

Performa
nce 

(TOPS) 

E. Eff. 
(TOPS/

W) 

Architect
ure 

Referen
ce 

TSMC+ NTHU  2.13E-
03 

22 6 2,4,8 4.18E-01 195.7 PIM [259] 

TSMC  0.037 22 
0.20

2 
4,8,12,16 3.3 89 PIM [257] 

TSMC  0.0014
2 

7 
0.00

32 
4 0.372 351 PIM [258] 

Samsung+GIT 
FORM

S 
66.36 32 

89.1
5 

8 0.0277  PIM [262] 

IBM + U Patra 
HERM

ES 
9.61E-

02 
14 

0.63
51 

8 2.1 21.9 PIM [260] 

Samsung+ASU PIMCA 0.124  20.9 1,2 4.9 588 PIM [261] 

Intel+Cornell U CAPE  7 9 4   PIM [263] 

SK Hynix AiM   6.08  1  PIM [264] 

TSMC DCIM 0.0116 5 
0.01

33 
4,8 2.95 254 PIM [265] 

Samsung  0.3181 4 4.74 
4,8,16, 

FP16 
39.3 11.59 Dataflow [266] 

Alibaba + FU  0.0212 28 8.7 3 0.97 32.9 Dataflow [267] 

  Alibaba + FU  0.072 65 8.7 3 1 8.6 
  

Dataflow 
[267] 

Alibaba  0.978 55 
602.

22 
8   Dataflow [268] 

TSMC+ NTHU  
0.0022

7 
22 18 2,4,8 0.91 960.2 PIM [269] 

TSMC + NTHU  
0.0054

3 
40 18 2,4,8 3.9 718 PIM [270] 

TSMC+GIT  
0.0003

50 
40 

0.02
7 

 0.0092 26.56 PIM [271] 

TSMC+GIT  0.131 40 25 1-8,1-8,32 7.989 60.64 PIM [272] 

Intel+UC  0.0090 28 
0.03

3 
1,1 20 2219 PIM [273] 
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Intel+UC  0.0194 28 
0.04

9 
1-4,1 4.8 248 PIM [274] 

TSMC+ NTHU nvCIM 
0.0039

8 
22 6 2,4 5.12 1286.4 PIM [275] 

Pi2star +NTHU  
0.0084

1. 
65 12 1-8 3.16 75.9 PIM [276] 

Pi2star +NTHU  
0.0065

2 
65 9 4,8 2 35.8 PIM [277] 

Tsing+NTHU  0.273 28 6.82 12 4.07 27.5 Dataflow [278] 

Samsung  0.381 4 4.74 4,8,FP16 19.7 11.59 Dataflow [279] 

Renesas 
Electronics 

 4.4 12   60.4 13.8 Dataflow [280] 

IBM  6.20 7 19.6 
2,4,FP(8,16,

32) 
102.4 16.5 Dataflow [281] 

Intel + IMTU QNAP 0.132 28 3.24 8 2.3 17.5 Dataflow [282] 

Samsung  0.794 5 5.46 8,16 29.4 13.6 Dataflow [283] 

Sony  0.379 22 
61.9

1 
8,16,32 1.21 4.97 Dataflow [284] 

Mediatek  1.05 7 3.04  3.6 13.32 Dataflow [285] 

Pi2star  0.099 65 12 8 1.32 13.3 Dataflow [286] 

Mediatek  0.0012 12   0.102 86.24 PIM [287] 

TSMC+NTHU  0.10 22 8.6 8,8,8 6.96 68.9 PIM [288] 

TSMC+NTHU  0.099 22 9.32 8,8,8 24.8 251 PIM [289] 

ARM+Harvard  0.04 12  FP4 0.734 18.1 Dataflow [290] 

ARM+Harvard  0.045 12  FP8 0.367 8.24 Dataflow [291] 

TSMC + NTHU  0.0037 22 18 8,8,22 0.59 160.1 Dataflow [292] 

STMircroelectro
nics 

 0.738 18 4.24 1,1 229 310 Dataflow [293] 

STMircroelectro
nics 

 0.740 18 4.19 4,4 57 77 Dataflow [294] 

MediaTek  0.711 12 1.37 12 16.5 23.2 PIM [309] 

TSMC+ NTHU   16  8  98.5 PIM [308] 

Renesas 
Electronics 

 5.06 14  8 130.55 23.9 Dataflow [310] 

* Integer Precision is indicated by only precision number(s). Floating point precision is mentioned as FP in the 
precision column. 

Alibaba has developed SRAM and DRAM-based digital CIM and PNM systems for low 
precision edge applications [267,268]. The CIM architecture uses multiple chiplet modules (MCM) to 
solve the complex problem instead of a single SoC. The CIM architecture in [267] proposes 
Computing-on-Memory Boundary (COMB), which is a compromise between in-memory and near-
memory computation. This technique exhibits high macro computing energy efficiency and low 
system power overhead. This CIM architecture demonstrated scaleable MCM systems using a COMB 
NN processor. The layerwise pipeline mapping schemes are utilized to deploy different sizes of NN 
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for the required operation. The chip operation is demonstrated with keyword spotting, CIFAR-10 
image classification, and object detection with tiny-YOLO NN using one, two, and four chiplets. 

IBM and the University of Patra together presented their PCM-based CIM processor, HERMES 
[260]. This CIM is a 256×256 in-memory compute core fabricated in 14nm CMOS process technology 
for edge inference. HERMES is demonstrated for image classification operation on MNIST and 
CIFAR-10 datasets. 

Samsung technology has been working on various CIM architectures for AI applications in edge 
to the datacenter. The company has released HBM-PIM recently [226,227]. HBM-PIM is for high-
speed memory access, which is fabricated with DRAM in a 20nm process. Samsung and Arizona State 
University (ASU) presented a PIMCA chip for AI inference [261]. PIMCA chip for AI inference [261]. 
PIMCA consumes a very low amount of power (124 mW). PIMCA is highly energy efficient, 588 
TOPS/W as shown in Table 2. TSMC has designed and fabricated analog [257,258] and digital [265] 
CIM systems for inference. 

Besides TSMC’s own research, the company has multiple CIM research projects on various 
emerging memory devices such as ReRAM [259], STT-MRAM [269], PCM [270], RRAM [271] and 
RRAM-SRAM [272] in collaboration with various research groups in the academia. The performance 
of these macro inference chips has been demonstrated in various high-tier conferences or scientific 
forums very recently. The best performance is demonstrated in ISSCC 2022 with PCM devices, and it 
exhibits 5.12 TOPS in 2-bit precision [275], which is 1286.4 TOPS/W. This CIM processor supports 
INT2 and 4 bit computing precision. The digital CIM system is fabricated with FinFET in 5nm process 
technology, and it performs 2.95 TOPS and 254 TOPS/W [265].  

Besides the AI accelerators introduced above, there are a handful of companies that are working 
on edge processors. The companies working on neuromorphic processors are MemComputing 
[213,295], GrAI [214], and iniLabs [296]. Memryx is a recently formed startup which is building high 
performance and energy efficient AI processors for a wide range of applications, such as 
transportation, IoT, and industry [297]. It can compute Bfloat16 activation with 4/8/16-bit weight and 
performs about 5TFLOPS. 

7. Performance Analysis of the Edge Processors 

This section discusses the performance analysis of the edge processors described earlier. The 
discussion is focused on different architectures for edge processors. At first, the overall performance 
is discussed based on the computing performance, power consumption, chip area, and computing 
precision. Then only PIM processors are discussed. At the end of this section, we have focused on the 
devices still under research and development or waiting for commercially available.  

i. Overall Analysis of the AI Edge Processor  

We compare all the edge AI processors listed in the previous section using the following key 
metrics:  
1. Performance: tera-operations per second (TOPS).  
2. Energy efficiency: TOPS/W. 
3. Power: Watt (W). 
4. Area: square millimeter (mm2). 

Performance: Figure 3 plots the performance vs. power consumption, with different labels for 
dataflow, neuromorphic, and PIM processors. The processors within a power consumption range of 
1W to 60W have a performance of 1 to 275 TOPS. These are geared towards comparatively high-
power applications such as surveillance systems, autonomous vehicles, industries, smart cities, and 
UAVs. The highest throughput processors in this list are the EyeQ6 from MobileEye, the Journey 5 
from Horizon, and the Jetson Orin from Nvidia. The Jetson Orin is about 2.15 times faster than both 
the EyeQ6 and Journey 5. From the company datasheet [], the Jetson Orin has 275 TOPS at INT8 
precision for 60W of power. The Orin consumes about 1.5 and 2 times more power than the EyeQ6 
and Journey 5, respectively. The processors with a power consumption of less than 1W have a 
performance from 0.2 GOPS to 17 TOPS. 
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Figure 3. Power consumption and performance of the AI edge processors. 

The IBM NorthPole has 200 TOPS for INT8 precision at 60 W (based on a discussion with IBM). 
However, the NorthPole can have higher TOPS of 400 and 800 at 4 and 2 bit precision respectively. 
According to a recent NorthPole article, the maximum power consumption of the NorthPole 
processor is 74 W [304]. 

These are targeted for extreme edge and IoT applications. The least power is needed for PIM 
processors of the NDP series by Syntiant, which are flash-memory based PIM processors [20]. 

Among neuromorphic processors, Loihi 2 outperforms other neuromorphic processors, except 
for the Akida AKD1000. The AKD1000 however consumes 20x more power than the Loihi 2 (see 
Table 2). Although the neuromorphic processors seem less impressive in terms of TOPS vs. W, it is 
important to note that they generally need far fewer synaptic operations to perform a task, if the task 
is performed with an algorithm that is natively spiking (i.e., not a deep network implemented with 
spiking neurons) [298]. 

The neuromorphic processors consume significantly less energy than other processors for 
inference tasks [142]. For example, the Loihi processor consumes 5.3x less energy than the Intel 
Movidious and 20.5x less energy than the Nvidia Jetson Nano [142]. Figure 3 shows that higher 
performance PIM processors (such as the M1076, M1108, LS-2803S, and AnIA), exhibit similar 
computing speeds as dataflow or neuromorphic processors at the same range of power consumption 
(0.5 to 1.5 W).  

Precision: Data precision is an important consideration when comparing processor 
performances. Figure 5 presents the precision of the processors from Figure 3. Figure 5 shows the 
distribution of precision and total number of processors for each architecture category. A processor 
may support more than one type of computing precision. Figures 3 and 4 are based on the highest 
precision supported for each processor. 
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Figure 4. Power vs. performance of edge processors with computing precision. 

Among dataflow processors, INT8 is the most widely supported precision for DNN 
computations. NVIDIA’s Orin achieves 275 TOPS with INT8 precision, the maximum computing 
speed for INT8 precision in Figure 5. However, some processors utilize INT1 (Efficiara), INT64 (A15, 
A14, and M1), FP16 (ARA-1, DNA100, Jetson Nano, Snapdragon 888+), and INT16 (Ethos78, and 
Movidius). Neuromorphic and PIM processors mainly support INT1 to INT8 data precisions. Lower 
computing precisions generally reduce the inference accuracy. According to [185], VGG-9 and 
ResNet-18 have accuracy losses of 3.89% and 6.02%, respectively, for inference while computed with 
INT1 precision. A more in-depth discussion of the relationship between quantization and accuracy 
is presented in Section 3(i). A higher precision provides better accuracy but incurs more computing 
costs. Figure 5 shows that the most common precision in the processors examined is INT8. This 
provides a good balance between accuracy and computational costs. 

 
Figure 5. Number of edge processors supporting various data precision. Total number of processors 
is indicated in the legend. 

As shown in Figure 4 and 5, almost all the neuromorphic processors use INT8 for synaptic 
computations. The exception to this is the AKD1000, which uses INT4 and shows the best 
performance among neuromorphic processors in terms of operations per second (1.5 TOPS). It 
however consumes around 18x more power than Loihi processors. At INT8 precision, the Loihi 1 
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performs 30 GSOPS using 110 mW [218,219], whereas Loihi 2 surpasses this throughput by 10x, with 
a similar power consumption [9]. 

As shown in Figure 4 and 5 PIM processors primarily support precisions of INT1 to INT8. Figure 
5 shows the performance of PIM processors in INT4 and INT8 precisions due to the unavailability of 
data for all supported precisions. Mythic processors (M1108 and M1076) manifest the best 
performance among PIM processors. Mythic and Syntiant have developed their PIM processors with 
flash-memory devices. However, Mythic processors require significantly higher power to compute 
DNNs in INT8 precision with its 76 computing tiles. Syntiant processors use INT4 precision and 
compute with about 13,000x lower throughput than Mythic M1076 while consuming about 6000x less 
power. The Syntiant processors are limited to smaller networks with up to 64 classes in NDP10x. On 
the other hand, Mythic processors can handle 10x more weights with greater precision [233]. The 
Samsung DRAM architecture-based PIM processor uses computing modules near the memory banks 
and supports INT64 precision [16]. 

Energy Efficiency: Figure 6 presents the performance vs. energy efficiency of dataflow, PIM and 
neuromorphic processors. The efficiency determines the computing throughput of a processor per 
watt. The energy efficiency of all PIM processors is located within 1 to 16 TOPS/W, whereas most of 
the dataflow processors are located in 0.1 to 55 TOPS/W. The PIM architecture reduces latency by 
executing the computation inside the memory modules, which increases computing performance and 
reduces power consumption. Loihi 2 manifests best energy efficiency among all neuromorphic 
processors. Energy Efficiency vs. power consumption, as shown in Figure 7, gives us a better 
understanding about the processors. Loihi 2 shows better energy efficiency than many high 
performances edge AI processors while it consumes very low power. Ergo is the most energy efficient 
processor among all dataflow processors, which shows 55 TOPS/W. Ergo is the most energy efficient 
processor among all dataflow processors, which processors, which shows 55 TOPS/W. 

 
Figure 6. Performance and energy efficiency of the edge processors. 

Chip Area: The area is an important factor for choosing a processor for AI applications on edge 
devices. Modern processor technologies are pushing the boundaries to fabricate very high density 
and superior performance at the same time. The smaller die area and lower power consumption is 
very important for battery powered edge devices. The chip area is related to the cost of the silicon 
fabrication and also defines the application area. A smaller chip with high performance is desirable 
for edge applications.  
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Figures 7 and 8 present the power consumption and performance, respectively vs. the chip area. 
It can be observed that in general, both the power consumption and performance increase with chip 
area. Based on the available chip sizes, the NothPole has the largest chip size of 800 mm2 and performs 
200 TOPS in INT8. The lowest area chips have a dataflow architecture. Figure 9 shows the energy 
efficiency vs. area as the combined relationship of Figures 8 and 9. In this Figure, the PIM processors 
form a cluster. The overall energy efficiency of this PIM cluster is higher than dataflow and 
neuromorphic processors of similar chip area. Some of the dataflow processors (such as Nema Pico, 
Efficiera, and IMG 4NX) exhibit higher energy efficiency and better performance vs area than other 
processors. 

 
Figure 7. Power consumption vs. area of the edge pro. 

 
Figure 8. Area vs. performance of the edge processors. 
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Figure 9. Area vs. energy efficiency of edge processors. 

ii. AI Edge Processor with PIM Architecture  

While Figures 3 to 11 describe processors of all types, Figure 12 shows the relation between only 
PIM processors that are either announced as products or are still in the industrial research. The 
research processors are presented in the conferences, such as ISSCC and VLSI. The PIM processors at 
the lower right corner of Figure 11 are candidates for data center and intensive computing 
applications [236–241]. The PIM processors with higher energy efficiency are suitable for edge and 
IoT applications because of their smaller size, lower power consumption, and higher energy 
efficiency. From Figure 12 we can see that most of the PIM processors under industrial research show 
higher energy efficiency than announced processors. This indicates that future PIM processors are 
likely to have much better performances and efficiencies. 

 
Figure 10. Power vs. energy efficiency of the edge processors. 
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Figure 11. Area vs. energy efficiency per unit area of edge processors. 

 
Figure 12. Performance vs. energy efficiency of PIM/CIM processors, Processors with Asterix (*) 
indicate the processors are still in industrial research, and other processors are released or announced 
by the manufacturer. 

The PIM processors compute the MAC operation inside the memory array thus reducing the 
data transfer latency. Generally, PIM processors compute in lower integer/fixed-point precision. A 
PIM processor generally supports INT 1-16 precision. However, according to our study, we found 
around 59% of the PIM processors support INT8 precision for MAC operation, as shown in Figure 5. 
The low precision computation is faster and requires lower power consumption compared to 
dataflow processors. The PIM edge processors consume 0.0001 to 4 W for deep learning inference 
applications, as presented in Table 2 and Figure 3. However, the dataflow processors suffer from high 
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memory requirements and latency issues and consume higher power than most of the PIM processors 
to get the same performance as we see in Figures 3–5.  

From Figures 3 and 4, Syntient’s NDP200 consumes below 1mW power and shows the highest 
performance for extreme edge applications. Mythic M1108 consumes 4W and exhibits the highest 
performance (35 TOPS) than all dataflow and neuromorphic processors that consumes below 10 W 
of power. For the same chip area M1108 consumes 9x less power than Tesla’s dataflow processor 
FSD, while FSD computes 2x faster than M1108 as presented in Figures 8 and 9.  

The processors below 100 mm2, Gyrfalcon’s LS2803 shows the highest performance except 
EyeQ5. However, EyeQ5 consumes about 14x higher power and performs 1.4x better than LS2803. 
The benefit of deploying PIM processors for edge applications is its high performance with less power 
consumption, and the PIM processors reduce the computing latency significantly as the MAC 
operations perform inside the memory array. 

iii. Edge Processor in the Industrial Research 

Several companies, along with their collaborators, are developing edge computing architectures 
and infrastructures with state-of-the-art performance. Figure 13 shows the power consumption vs. 
energy efficiency of the industrial research processors which were presented at high tier conferences 
(such as ISSCC, VLSI). The chart includes both PIM [259–265,269–277,287–289] and dataflow [266-
268,278-286.290-294] processors.  

Renesas Electronics presented a near-memory system in ISSCC 2024 developed in a 14nm 
process that achieved 130.55 TOPS with 23.9TOPS/W [310]. TSMC and National Tsing Hua University 
presented one near memory system in a 22nm CMOS process in ISSCC 2023 that computes 0.59 TOPS 
and 160 TOPS/W in 8-8-26 bit (input-weight-output) precision [292]. This system showed the highest 
energy efficiency amongst the near-memory and dataflow processors. The energy efficiency is 
achieved by a 90% input sparsity, while a 50% input sparsity gives an energy efficiency of 46.4 
TOPS/W [292]. Alibaba and Fudan University [267] presented a processing near memory system in 
ISSCC 2022 with 0.97 TOPS and 32.9 TOPS/W energy efficiency while computing with INT3 
precision. This accelerator is a SRAM based near-memory computing architecture. Tsing 
Microelectronics and Tsinghua University [278] demonstrated a dataflow processor in ISSCC 2022 
for NLP and computer vision applications, which shows an energy efficiency of 27.5 TOPS/W in 
INT12 precision. Renesas Electronics [280] exhibited 13.8 TOPS/W in INT8 computing precision. 
Many other companies, such as IBM [281], Sony [284], Mediatek [285], and Samsung [279,283] have 
also demonstrated their research work on the dataflow edge processors with energy efficiencies 
around 11 to 18 TOPS/W 
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Figure 13. PIM (red) and dataflow (blue label) processors in industrial research. 

PIM processors generally manifest better energy efficiencies than dataflow processors. TSMC 
and National Tsing Hua University presented a PIM system in a 16nm CMOS process in ISSCC 2024 
that achieved 98.5 TOPS/W in 8-8-23 precision (input-weight-output) [308]. Mediatek and TSMC 
presented a digital PIM system in ISCC 2024 developed in a 3nm process that achieved 23.2 TOPS/W 
with 16.5 TOPS performance [309]. Intel and Columbia University demonstrated a PIM processor 
[273] in ISSCC 2022 that shows the performance and energy efficiency of 2219 TOPS/W and 20 TOPS 
respectively, which is around 33x more efficient than the processor mentioned in [269]. 

However, the former processor uses extremely lower precision (INT1). TSMC and Tsinghua 
University [288] presented a PIM accelerator in ISSCC 2023 with 6.96 TOPS and 68.9 TOPS/W, which 
is about 12x faster than the near memory computing system presented in [292], while computing in 
INT8 precision. STMicroelectronics presented a PIM accelerator that computes 57 TOPS and 77 
TOPS/W in INT4 precision [294] and performs about 25x better than near memory computing 
presented in ISSCC 2021 [282]. TSMC and Tsinghua University [270] presented a PCM based 
processor in ISSCC 2022, which shows 65 TOPS/W in INT8 precision, and is around 5x better than 
[292]. Samsung and Arizona State University [261] demonstrated PIMCA in VLSI’ 2021 and showed 
an energy efficiency of 437 TOPS/W computed in INT1 precision. Other companies such as TSMC 
and collaborators [259,269–272,275,288,292], Samsung and collaborators [261], Intel and collaborators 
[263,273,274,282], and HK Hynix [264] have demonstrated their PIM processors in recent ISSCC and 
VLSI conferences.  

8. Summary 

This article reviewed different aspects and paradigms of recent AI edge processors released or 
announced recently by various tech companies. About 100 edge processors were examined. This 
work however did not cover the DNN algorithms, HPC computing processors, or cloud computing. 
We categorized state-of-the-art edge processors and analyzed their performance, area, and energy 
efficiency to support the research community in edge computing. Multiple processing architectures 
including dataflow, neuromorphic, and PIM were examined. The performance and power 
consumption were analyzed for narrowing down the edge AI processors for specific applications. 
The deep neural networks and software frameworks supported were discussed and presented in 
tables. 

Several of the edge processors offer on-chip retraining in real-time. This enables retraining of 
networks without having to send sensitive data to the cloud, thus increasing security and privacy. 
Intel’s Loihi 2 and Brainchip’s Akida processor can be retrained on local data for personalized 
applications and faster response rates. 

This study found the power consumption and performance of processors varies in different 
architectures, and application domains. For extreme wearable edge devices, the power consumption 
ranges from 100 μW to a few mW and computethroughput is around 1 GOPS. We found that many 
applications require higher computing performance, such as video processing, and autonomous car 
operations. These high-performance applications consume a higher amount of power than extreme 
edge processors. For example, IBM's NorthPole computes at 200 TOPS with INT8, while consuming 
60 W of power. This study found that for the same range of power consumption and chip size, PIM 
architectures perform better than dataflow or neuromorphic processors. This review found that the 
PIM processors show significant energy efficiency and consume less power compared to dataflow 
and neuromorphic processors. For example, the Mythic M1108 is a PIM processor and has the highest 
performance (35 TOPS), among dataflow and neuromorphic processors that consume less than 10W 
of power. Neuromorphic processors are highly efficient for performing computation with less 
synaptic operations but may not be ideal for deep learning applications yet. 

There are several emerging deep learning applications that are receiving significant interest. This 
includes generative AI models, such as transformer models used in ChatGPT and DALL-E for 
automated art generation. Transformer models are taking the AI world so aggressively, manifested 
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by their super-intelligent chatbot and search queries. Generative AI models are also taking place in 
image and creative art generation. Transformer engines are mainly designed for data centers or cloud 
applications, but some processors, such as NVIDIA Hopper H100 [305], can be used for edge 
workloads. Samsung has released digital PIM for generative AI applications in the data center and 
edge [306]. ResNet, GoogleNet, and YOLO models are also being used in various industries for facial 
recognition, lane keeping assistance, and surveillance. Deep reinforcement learning is becoming 
popular for autonomous learning models in dynamic environments. All of these applications could 
benefit from highly efficient specialized processors that could run the applications locally, without 
the need for cloud access. Future directions for industry could be to implement these algorithms in 
emerging non-Von Neumann computing paradigms for low power computing on edge devices. 
Current dataflow processors, such as the NVIDIA Orin, or the IBM NorthPole would probably be 
able to handle these applications without any changes. More emerging architectures, such as PIM 
and neuromorphic technologies, may need more enhancements to enable these applications to run 
on edge devices. 
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