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Abstract

Modern AI systems, based on von Neumann architecture and classical neural networks,
have a number of fundamental limitations in comparison with the brain. This article dis-
cusses such limitations and the ways they can be mitigated. Next, it presents an overview
of currently available neuromorphic AI projects in which these limitations are overcame by
bringing some brain features into the functioning and organization of computing systems
(TrueNorth, Loihi, Tianjic, SpiNNaker, BrainScaleS, NeuronFlow, DYNAP, Akida). Also,
the article presents the principle of classifying neuromorphic AI systems by the brain fea-
tures they use (neural networks, parallelism and asynchrony, impulse nature of information
transfer, local learning, sparsity, analog and in-memory computing). In addition to new
architectural approaches used in neuromorphic devices based on existing silicon microelec-
tronics technologies, the article also discusses the prospects of using new memristor element
base. Examples of recent advances in the use of memristors in neuromorphic applications
are also given.
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1 Introduction
Modern artificial intelligence (AI) systems based on neural networks would not be possible with-
out hardware that can quickly perform a huge number of repetitive parallel operations. The
modern AI systems have become possible and gained widespread use due to hardware and large
datatasets. As shown in [1], throughout the AI history, precisely those approaches won for which
there was suitable hardware. That is why it is important to consider AI algorithms in conjunc-
tion with the hardware that they are run on. It is the hardware that determines the availability
and effectiveness of AI algorithms.

A great majority of the latest AI systems are built by pairing von Neumann computers and
classical neural networks, dating back to the Rosenblatt’s perceptron.

1.1 Von Neumann Architecture
The von Neumann architecture separates the memory and the computations. The computations
are executed in the form of programs, which are sequences of machine instructions. Instructions
are performed by a processor. A processor instruction usually has several arguments that it takes
from processor registers (small but very fast memory cells located in the processor). At that,
the instructions and most of the data are stored in the memory separately from the processor.
The processor and the memory are connected by a data bus by which the processor receives
instructions and data from the memory.

The first bottleneck of this architecture is the limited throughput of the data bus between the
memory and the processor. The data bus is loaded mainly by transfer of intermediate calculation
data from/to random access memory (RAM) during the execution of a program. Moreover, the
maximum throughput of the data bus is much less than the speed at which the processor can
process data.

Another important limitation is the largely different speed of the RAM and the processor
registers (Figure 1). This can cause latency and processor downtime while it fetches data from
the memory. This phenomenon is known as the von Neumann bottleneck.

It is also worth noting that this approach is energy-intensive. As argued in [2], the energy
needed for one operation of moving data along the bus can be 1,000 times more than the energy
for one computing operation. For example, adding two int8s consumes 0̃.03 pJ while reading
from DRAM consumes 2̃.6 nJ.

1.2 Neural Networks based on the Von Neumann Architecture
To solve cognitive problems on computers, there were developed the concept of artificial neural
networks (ANN) based on the perceptron [3] and the backpropagation method [4]. Perceptron
is a simplified mathematical model of an artificial neuron network, in which neurons calculate a
weighted sum of their input signals and generate an output signal using an activation function.
The process of training such a network by the backpropagation method consists in modification
of its weights decreasing the error.

Since the majority of modern neural networks have a layered architecture, the most compu-
tationally intensive operation in these networks is the operation of multiplying a matrix by a
vector y = Wx. To carry out this operation, it is first necessary to obtain data from the memory,
namely, m ∗n weights of W and n values of vector x. It should be noted that, m ∗n weights will
be used once per matrix-vector multiplication while the values from the vector x will be reused
(Figure 2).

Thus, in order to perform computations, the processor needs to receive weights and input
data from the memory. As mentioned above, the throughput of the data bus and the latency
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Figure 1: Memory hierarchy, access speed and power consumption

in receiving data limit the speed of obtaining weights. Also, the number of weights grows as
O(n2), where n is the input size. However, there are the limit of the throughput of the data bus,
connecting the processor with the memory and transferring the weights and the input vectors. It
becomes exhausted much earlier than the available amount of computation (multiplying matrices
by a vector and taking activation functions) per unit time.

1.3 Mitigating Limitations in Modern Computing Systems
To begin with, let us look at the ways to mitigate the above limitations in modern AI systems.

1.3.1 CPU

Classically, the problem of memory latency was solved in the CPU by using a complex multi-level
cache system 1 [5]. In modern processors, caches can be up to 40% of the chip area, providing
tens of megabytes of ultra-fast memory. Usually, the size of practically used neural networks
does not allow fitting all the weights into caches (see 3). Nevertheless, the latest processors with
AMD 3D V-cache technology can change this situation, providing larger caches.

Other traditional approaches to optimizing processors were speculative execution, branch
prediction, and others [5]. However, in matrix multiplication, the order of computations is known
in advance and does not require such complex approaches, thus making these mechanisms useless.
This means that in the ANN domain the CPU can only be suitable for computing small neural
networks, not modern large architectures hundreds of megabytes in extent.

1.3.2 GPU

The GPU uses several strategies to deal with memory latency. The main one is to give each
streaming multiprocessor a large file register that saves the execution context for many threads
and provides quick switching between them. The computation scheduler uses this feature and,
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Figure 2: A schematic view of neural network computations. Elements of input vector x are
reused n times while weights wij are used once
.

Figure 3: Memory latency depending on data range [21]
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Figure 4: Switching between warps

when an instruction with a high latency is executed in one of the instruction threads (SIMD
thread 1), for example, obtaining data from memory, it immediately switches to another instruc-
tion thread (SIMD thread 2), and if a latency occurs in there too, the scheduler begins a new
ready instruction thread (SIMD thread 3). After some time, data for the first thread arrives and
it also becomes ready for execution (see 4). This way memory latency can be hidden [5]. More-
over, in a GPU there can be tens or even more than a hundred such streaming multiprocessors
that share the load among themselves.

However, what is crucial aside from latency is the memory throughput, i.e. the maximum
amount of data that can be received from the memory per unit time. To solve this problem in
GPUs, NVIDIA began adding High Bandwidth Memory (HBM) starting with the P100 (2016),
and this dramatically increased their performance compared to previous generations. In the
Volta and Turing architectures, Nvidia continued to increase the memory throughput, bringing
it up to 1.5 TB/s in the A100 architecture [6].

1.3.3 TPU

Google announced the first TPU-based processor TPUv1 in 2016 [7]. It mitigates latency and
low memory throughput by using so-called systolic matrices and software-controlled memory
instead of caches. The idea of systolic computations is to create a large matrix (256 x 256 for
TPUv1) of computing units. Each unit stores a weight and performs two operations. First, it
multiplies number x that has come from the unit above by the weight and adds the result to the
number that came from the unit to the left. Second, it sends the number x received from above
to the unit below, and forwards the received sum to the unit to the right. This is how the TPU
performs matrix multiplications in a pipeline. With a sufficiently large batch size, it will not
have to constantly access the weights in memory, since the weights are stored in the computing

5



units themselves. At that, having a batch size larger than the width of the systolic array, the
TPU will be able to produce one result of multiplying a 256x256 matrix by a 256-long vector
each cycle.

Also, unlike the CPU and the GPU that spend energy on constantly accessing registers,
transferring values from registers to Arithmetic Logic Unit (ALU) and saving them back to the
registers, the TPU can reuse input values and does not have to repeatedly access the registers.
This is achieved due to the large number of ALUs in the TPU.

1.3.4 Neuromorphic Approach

Despite significant advances and market dominance of the hardware discussed above, the AI
systems based on them are still far from their biological counterparts. There is a gap in the level
of energy consumption, flexibility (the ability to solve many different tasks), adaptability and
scalability. However, such problems are not observed in the mammalian brain. In this connection,
it can be assumed that, as it already happened with the principle of massive parallelism [8], the
implementation of crucial properties and principles of the brain operation could reduce this gap.
As a response to this need, a neuromorphic approach to the development of AI systems has
appeared in recent years.

The brain is an example of a fundamentally different, non von Neumann, computer. Unlike
in classical neural networks executed in modern computing systems, in the brain:

• Neurons exchange information using discrete impulses - spikes;

• All events occur asynchronously, there is no single process that explicitly synchronizes the
work of all neurons;

• Learning processes are local and network topologies are non-layered;

• There is no common memory that universal processors would work with. Instead, a huge
number of simple agents function in a self-organizing way.

2 Neuromorphic Approaches in Computing Systems
Today, many kinds of neural network accelerators are called neuromorphic AI systems to attract
attention. To reduce the degree of uncertainty in classifying AI systems as neuromorphic, we
propose a list of neuromorphic properties that appear to be useful in creating computing systems
and have proven themselves in real-life projects:

• neural network - based approach: the capability of learning (no need to set the parameters
explicitly), the emergence of intellectual properties by linking a large number of relatively
simple elements into a network,

• parallelism: parallel work of neurons, simultaneous execution of different tasks,

• asynchrony: no single synchronizing process,

• impulse nature of information transmission: minimum overhead for signal transmission and
signal processing at the receiving neuron, resistance to noise,

• local learning: lower overhead for data transfer operations during learning, the ability to
create unlimitedly large systems, continuous and incremental learning,
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• sparsity of data streams: event-driven signal processing, lower overhead for data transfer
and data processing,

• analog computing: efficient hardware implementation.

• in-memory computing: no overhead for transferring intermediate data, no competitive
memory access.

Let us consider neuromorphic properties in more detail in the following sections.

2.1 Parallelism
Each biological neuron is an independent computer, but much slower than silicon processors.
However, the number of biological neurons in the brain that perform coordinated work reaches
87 billion. Back in the late 1980s, researchers [8] came to the conclusion that massively parallel
architectures would be required for the efficient operation of neural networks. It was the massive
use of the highly parallel architectures (GPU) that had ensured the current success of neural
networks.

2.2 Asynchrony
However, parallelism by itself does not always give the desired computing effect when synchroniza-
tion between computing nodes is required. Then, according to Amdahl’s law, the synchronization
overheads grow non-linearly as the number of computers increases, thus limiting the gain from
parallelism. But the brain seems to have no mechanism that explicitly synchronizes the work
of all neurons. Biological neurons work asynchronously, which makes it possible to bypass the
limitations of Amdahl’s law.

2.3 Impulse Nature of Information Transmission
In the brain, information is transmitted in the form of nerve impulses, i.e. abrupt, short changes
in potential that travel along nerve fibers and always have the same duration and amplitude.
Spiking Neural Network (SNN) is a popular mathematical model that describes the impulse
nature of information (see 5). In SNNs, neurons exchange spikes, i.e. elementary events that
have no attributes other than the time of their generation. In that, the transmission of a spike
from neuron to neuron does not occur instantly, but requires some time that varies for different
pairs of neurons. Thus, each synapse can be characterized not only by the weight w but also by
the time delay d. Spike times and delays serve as a mechanism for explicitly introducing time
into the computing model.

Information transmission in the form of impulses appears to have key advantages as compared
to transmission of real numbers, used in traditional neural networks:

• data can be transferred between neurons in a simple asynchronous way,

• SNNs make it possible to work with dynamic data, as it explicitly includes a time com-
ponent. In SNN, information is encoded based on the time of spike generation and the
presence of a delay in spike propagation from neuron to neuron,

• SNN is a complex non-linear dynamic system,
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Figure 5: Spiking model vs. classical model [25].
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• it is energy efficient. The activity of a neuron is reduced to its reaction to the arriving
spike, hence after this reaction is complete, the neuron goes into an inactive state that
does not require energy. Thus, at each moment of time only a small part of neurons in the
network is in the ‘operating mode’ and consumes energy.

However, today we see only a few SNN applications in practical tasks. In addition to difficulties
with hardware, classical algorithms still outperforms SNN in problem solving quality. Despite a
large number of academic papers demonstrating solutions of model problems, SNN training and
SNN topologies remain open issues.

2.4 Local Learning
The learning of classical neural networks is based on the backpropagation algorithm, which is a
special case of the gradient descent method [4]. The use of gradient descent methods in the brain
is hardly realistic because it would be necessary to bring to each neuron a corrective signal that
is computed somewhere based on the results of the network. This means that a feedback system
is also required. But even if it were available, it is unclear how two complementary connection
systems (direct and reverse) would exchange information about the weight value in them. This
problem is called the weight transport problem [9].

An alternative to backpropagation is learning methods built upon the principle of locality.
The synaptic weight can be modified only on the basis of some activity characteristics of neurons
linked by this synapse. In this case, the ideology of Reinforcement Learning (RL) is often used
when the correctness of the network decisions is evaluated by delayed signals of reward and
punishment.

In the case of SNNs, the laws of synaptic plasticity used for learning are quite diverse, but
many of them are modification of the so-called Spike Timing Dependent Plasticity (STDP) [10].
In the STDP model, the synapses that received spikes shortly before the neuron generated the
spike, are strengthened, while the synapses that received spikes after the neuron generated the
spike, are weakened. Local learning enables preserving the principle of asynchronous network
operation, hence it is applicable to networks of unlimited size. In addition, in many models of
synaptic plasticity, it is possible to implement a change in synaptic weights without multiplication
operations.

2.5 Sparsity of Data Streams
As known [11, 12], less than 10% of neurons in the brain are usually active simultaneously. It is
very unlike the inference mode of classical neural networks, in which all neurons are involved in
computations. This is determined by the following factors.

The first factor is a high similarity of the subsequent frames. The transmission of the changed
part of the signal only allows to decrease traffic dramatically, making the data sparse in time
(temporal sparsity). For example, in computer vision, instead of transmitting information about
each pixel of the image every tick of time, it is possible to transmit only the events of changing
the intensity of specific pixels. This approach is used in event-based cameras like Dynamic Vision
Sensors (DVS) that can generate an output signal immediately in a spike form.

The second factor is a threshold value of the membrane potential. Below the threshold, the
neuron is silent even in the presence of an input signal. The resulting sparsity in data streams
is called spatial (spatial sparsity). A similar idea is implemented in the ReLU activation. The
significant number of neurons have an output equal to zero but, when computing on the GPU,
these zeros will be multiplied anyway just as other numbers.
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The third factror is the sparseness of the graph of neural connections. No fully connected
layers have been found in the biological brain. Each neuron has a rather limited number of
connections (5̃,000). The sparsity of the data flow, conditioned by the network topology, is
called structural (structural sparsity). For example, as shown in [13], in deep networks it is
possible to zero more than 90% of the weights of connections, while maintaining the network
performance.

2.6 Analog Computing
The digital representing and processing information uncovers the potential of numerical methods.
However, in terms of the number of computational elements, this approach is expensive. An
alternative approach is analog circuits. In AI systems, analog circuits can be used for two
purposes: modeling the membrane potential dynamics and modeling the synaptic operations.
Let us consider them in more detail.

The behavior of biological neurons is usually modeled by a system of differential equations
describing the membrane potential dynamics and the operation of ion pumps. In the absence of
an analytical solution, the numerical solution of such a system of equations can be very costly. In
the brain, neurons do not contain nodes that implement digital computation. They realize their
functional with the help of analog computation (membrane potential dynamics). But there are
other physical objects that demonstrate similar dynamics (for example, an RC circuit). Thus, a
biological neuron can be modeled not only by numerically solved differential equations, but also
by using a suitable analog circuit described by such equations. Analog neurons can be 10,000
times faster and more energy efficient [14], and also they naturally support parallelism. The
fundamental disadvantage of analog neurons is the impossibility of directly configure and debug
them due to the lack of digital memory. Comparing analog implementations with digital ones, we
note that analog neurons implement the ‘one neuron – one computer’ principle, while in digital
devices one computing unit usually model many neurons by switching the context between them.

Another area where analog circuits are used is the implementation of synaptic operations. For
example, the classical model of a neuron requires the computation of Multiply And Accumulate
(MAC) operations that take the form: sum = W1 ∗X1 + ... + Wn ∗Xn). It can be represented
as a combination of Ohm’s and Kirchhoff’s laws: sum = I1 ∗R1 + ... + In ∗Rn, where current I
plays the role of signal X, and resistance R expresses the value of weight W. In such a scheme, all
elements of the multiply–accumulate operation are performed absolutely in parallel in one tick
of time.

2.7 In-Memory Computing
When performing neural network emulation on the CPU/GPU, one core models a large number
of neurons, sequentially switching context between them. This creates significant time and energy
overhead for transferring neuron context values to memory and back. Nothing similar is observed
in biological neurons.

A biological neuron implements the principle of in-memory computing. A biological neuron is
simultaneously a device that stores its state (memory represented by the membrane potential and
the strength of synaptic connections), and a device that performs computations. This approach
is free of von Neumann’s limitations rooted in physical separation of the shared memory and
the processors. The principle of in-memory computing dictates that the memory of a neuron is
isolated from the other neurons. This principle implies the ‘one neuron – one computer’ model,
which is inherent to analog implementations of a neuron. However, in digital implementations,
this approach is too wasteful since there is the possibility of modeling many neurons by one core
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due to context switching. That is why a hybrid approach is useful in digital implementations.
The memory, located physically close to the computing core, is shared by a group of neurons
that are modeled by that core (near-memory computing).

The Static Random Access Memory (SRAM) memory used for such solutions is rather ex-
pensive, and this limits the development of SRAM-based chips.

3 Neuromorphic Projects
The field of neuromorphic computing is still in its infancy and there is no consensus on what
properties should be copied from the brain. Although the development of this field is far from
complete, the first steps have already been taken. Next, we will consider existing projects and
approaches that can be called neuromorphic based on the classification proposed in the previous
section.

3.1 TrueNorth
The TrueNorth project [15] (2014, IBM), created under the auspices of the DARPA SyNAPSE
program, is the world’s first industrial neuromorphic chip.

The TrueNorth chip is digital, but it does not include general-purpose computational сores.
The chip contains 4,096 neural cores, each simulating 256 spiking neurons in real time and
contains about 100 Kbits of SRAM memory for storing the state of synapses. A digital data
bus is used for communication between neurons and spikes are represented as Address Event
Representation (AER) packets containing the identifier of the emitting neuron and the generation
time. Multiplication and division are not supported in the digital circuits of TrueNorth neural
cores, only addition and subtraction. The functioning of the neural core is not programmed; it
is realized in the form of digital operations fixed at the hardware level.

Each neural core has 256 common inputs that can be arbitrarily connected to 256 neurons
modeled in one core, i.e. one neuron cannot have more than 256 synapses. Moreover, the weight
of each synapse is coded by 2 bits. This means that if neurons have excitatory and inhibitory
synapses, the weight of synapses of each kind within one neuron can be only equal to one value.
Such primitive coding scheme does not allow any learning algorithm to be realized directly on
the chip.

TrueNorth is suitable for the execution of convolutional (CNN) and recurrent neural networks
(RNN) [15], but only in the inference mode. Another hardware platform (most frequently, GPU)
should be used for the learning to be followed by the translation of the learned weights into a
configuration of TrueNorth neurons.

As an example, the world’s first event-based gesture recognition system was demonstrated at
CVPR 2017 [16]. It consisted of a DVS camera and a TrueNorth chip, capable of recognizing
ten gestures with 96.5% accuracy in 0.1 seconds of gesture demonstration with a consumption
of 0.18 W.

A year later, at CVPR 2018 [17], the same team presented an event-based stereo vision system,
already consisting of two DVS cameras and eight TrueNorth chips, capable of determining the
depth of a scene at 2,000 disparity maps per second, while remaining 200 times more energy
efficient than other state-of-the-art solutions.

In 2019 [18] they demonstrated a scene-understanding application that detects and classifies
multiple objects in high definition aerial video at a throughput exceeding 100 frames per second.
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3.2 Loihi
The Loihi project (2018, Intel) [19] was the first neuromorphic chip with on-chip learning. A
Loihi chip includes 128 neural cores, three Pentium processors, four communication modules for
AER packet exchange. Each neural core simulates up to 1,024 spiking neurons and contains 128
Kbyte of SRAM to store the state of the synapses. Thus, a chip simulates approximately 128,000
neurons and up to 128,000,000 synapses. The neuron to neuron transmission of all the spikes is
guaranteed, and if the flow of spikes becomes too intensive, the system simply slows down.

Synaptic weights can be from 1 to 9 bits and are dynamically modified, making it possible
to learn directly on the chip. Besides the weight, the state of each synapse is described by a
synaptic delay of up to 6 bits and some variable occupying up to 8 bits, which can be used
as an auxiliary variable in the plasticity law. Local learning is realized by the procedure for
recalculating the weights using the formula specified when configuring the core. The formula
consists only of addition and multiplication operations.

A number of neurocomputers of different capacities have been created on the basis of Loihi.
Pohoiki Springs is the most powerful among them. The system includes 768 Loihi chips combined
into 24 modules that are positioned on one motherboard, thus simulating 100,000,000 neurons.

More than a hundred scientific groups around the world are using Loihi in research and applied
problems [20], for example, for recognition and segmentation of images and smells, processing
data sequences, realization of a proportional integral differential controller (PID) based on a
spiking network, finding the shortest paths in a graph, and others. Some problems are solved by
converting the trained classical neural networks into the SNN form. In other projects, SNNs are
trained by using surrogate gradient. At last, in several problems, local learning rules are applied.
For example, local learning rules are utilized for robotic arm control [21] and copter balancing
[22].

Intel announced the creation of the second version of the Loihi chip [23] in 2021. One Loihi 2
chip still contains 128 neural cores, simulating 120,000,000 synapses and 1,000,000 programmable
(rather than configurable) neurons. The chip is built using Intel4 7nm technology, contains 2.3
billion transistors and has an area of 31 mm2. Another feature of Loihi 2 is 3D multi-chip scaling,
i.e. the possibility of combining multiple chips into one system in a 3D (rather than 2D) space,
thereby providing lower overheads for communication between the chips.

Loihi 2 realizes a generalized event-based communication model based on local broadcasts
and graded spikes (that is, non-binary spikes), in which the spike value is coded by up to 32
bits. In this model, the spikes generated in the system can have amplitude, making it similar to
NeuronFlow (considered below).

Alongside Loihi 2, Intel researchers introduced the Lava framework [24]. It is a cross-platform,
open-source framework that offers a new paradigm for describing process-based computing. Lava-
has implementations for CPU, GPU and Loihi 2.

3.3 Tianjic
The Tianjic project (2019, Tsinghua University) [25] is the first hybrid chip that can work
effectively with both ANNs and SNNs. This possibility comes from the reuse of the same parts
of circuits for dealing with different types of neural networks. The additional overhead for such
versatility is only 3% of the chip area. Thus, with the Tianjic chip, it is possible to combine
architectures of neural networks of different nature (ANN and SNN) within one system. One
Tianjic chip contains 156 neural cores, simulating 40,000 neurons and 10,000,000 synapses. Each
core contains 22 Kbyte of SRAM. The digital data bus is used for communication between the
cores, and the signals are represented as AER packets. Scaling is achieved by combining chips into
a 2D mesh network. On-chip learning is not supported. The neural network must be pre-trained
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on another platform (most frequently, GPU) and transferred into the Tianjic configuration to
work in the inference mode. Running SNN on Tianjic is 22 times faster and 10,000 times more
energy efficient than on GPU. For ANNs, the gains are also significant:

• LSTM networks are 467 times more energy efficient,

• MLPs are 723 times more energy efficient and 35 times faster in terms of frame rates,

• CNNs are 53 times more energy efficient and 101 times faster in terms of frame rates.

An example of using just one Tianjic chip to create a bicycle motion control system is pre-
sented in [25] , which includes real-time object detection (CNN), object tracking (CANN), voice
control (SNN), obstacle avoidance and balance control (MLP). Another SNN, called a Neural
State Machine (NSM), was used to integrate neural networks with each other.

3.4 SpiNNaker
The SpiNNaker project (2011, The University of Manchester) [26] was the first hardware platform
designed exclusively for SNN research. The second generation of the platform SpiNNaker 2 (2018,
Dresden University of Technology and The University of Manchester) [27] is being developed as
part of the European Human Brain Project.

SpiNNaker is not a chip - it is a massively parallel computer. Its main component is a spe-
cially designed microcircuit that has 18 Mbyte of SRAM and 144 ARM M4 microprocessors.
These microprocessors have a very limited set of instructions (for example, they do not support
division), but they have high performance and low power consumption. The second generation
SpiNNaker added support for rate-based DNN, a whole layer of accelerators for numerical oper-
ations (exp, log, random, mac, conv2d) and dynamic power management (different voltages and
frequencies for different tasks).

Chips are mounted on boards with 56 chips per board. The boards are mounted into racks
of 25 in each rack. The racks are combined into cabinets of 10 in each cabinet. All of these make
up the SpiNNaker neurocomputer with 106 processors [28] together with the control PC.

The operation of chips within the entire computing system is asynchronous in relation to
each other. This gives the entire system more flexibility and scalability but leads to necessity
of using AER packets for spike representation. Different communication strategies may be used
(multicast, core-to-core, nearest neighbor).

With SpiNNaker, researchers can solve the problem of modeling the biological brain struc-
tures. The real-time simulation of a 1 mm2 cortical column (77,000 neurons, 285,000,000
synapses, 0.1 ms time-step) was demonstrated in [29], while the best result of this benchmark on
the GPU is two times slower than real time. Thanks to the asynchrony of SpiNNaker, modeling
of a 100 mm2 column, instead of a 1 mm2 one, can be achieved by simply increasing the num-
ber of computational modules in the system, which is already unattainable for the GPU due to
synchronization limitations.

3.5 BrainScaleS
The BrainScaleS project (2020, Heidelberg University) [30] is an ASIC device developed as
part of the European Human Brain Project. The main idea of BrainScaleS is to emulate the
work of spiking neurons applying analog computations. Electronic circuits are used for analog
computations. Such electronic circuits are described by the differential equations resembling
the equations expressing behavior of membrane potential in biological neurons. One electronic
circuit with a resistor and a capacitor corresponds to one biological neuron.
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The first version of BrainScaleS was released as early as 2011, but it did not allow on-
chip learning. In the second version, several digital processors were added to support local
learning (STDP), in addition to the block of analog neurons. The digital data bus is used for
communication between neurons using spikes in the form of AER packets. One chip can emulate
512 neurons and 130,000 synapses. The studies [14, 31] showed that a BrainScaleS neuron
could work 10,000 times faster than a biological neuron in the analog implementation. Besides
SNN emulation, BrainScaleS can be useful with classical ANNs, performing a matrix-vector
multiplication operation in the analog mode.

The main disadvantage of the analog model of a neuron, based on an electrical circuit, is
its inflexibility, i.e. the impossibility of changing the neuron model. The relatively large size
of the analog neuron is another significant drawback. Works [32, 33] give examples of applying
BrainScaleS to solve the problems of handwritten digit recognition (MNIST), speech recognition
by SNN, and also a number of problems in the domain of ANN. For instance, for the spiking
MNIST dataset, the classification accuracy was 97.2% with a latency of 8 µs, a release of 2.4
µJ per image, and a total consumption of 0.2 W for the entire chip connections. The learning
was on-chip, but the surrogate gradient methods were used [32]. The paper [34] demonstrates
the possibility of local learning for BrainScaleS in the Reinforcement Learning tasks using the
R-STDP algorithm. The system was trained to control a slider bar in a computer game similar
to Atari PingPong.

BrainScaleS is not the only ASIC for simulating analog neurons: the NeuroGrid project [35]
(2009, Stanford University) was based on the same idea. However, it was decided to exclude it
from this review because the project seems to have been abandoned (the latest updates were in
2014).

3.6 NeuronFlow
The NeuronFlow project [36] (2020, GrAI Matter Labs) presented the GrAIOne chip. The
project implements an idea of creating an accelerator to speed up sparse computations and to
deal with event-based data. The chip is capable of accelerating both ANN and SNN but it does
not support on-chip learning.

GrAIOne contains 196 neural cores simulating 200,704 neurons. Each core contains 1,024
neurons and SRAM for storing the state. The cores communicate via the digital data bus using
AER packets.

The term NeuronFlow denotes an architecture with the underlying idea to speed up compu-
tations by using a high correlation of frames in data-flow processing tasks (audio, video). For
example, each next frame differs only a little from the previous one in a regular video. Therefore,
most neuron activations for the two consequent frames will also be very similar. Then it is possi-
ble to avoid sending activation from one neuron to another if it has not changed significantly from
what it was at the previous step. This approach gives an opportunity to drastically reduce the
number of synaptic operations (multiplications of weights by input values) and memory access
operations. Thus, the NeuronFlow architecture is suitable only for processing slowly changing
data; otherwise, its advantages are cancelled out.

The paper [37] demonstrates the optimization of the PilotNet neural network operation by
reducing the number of floating point operations by 16 times. PilotNet is Nvidia’s architecture
for controlling the steering wheel of an unmanned vehicle. The network receives an image from
the front view camera as an input and calculates the steering wheel angle.
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3.7 DYNAP
DYNAP (Dynamic Neurormorphic Asynchronous Processors) is a family of solutions from SynSence,
a company from the University of Zurich. The company has a patented event-routing technology
for communication between the cores.

According to [38], the scalability of neuromorphic systems is mainly limited by the tech-
nologies of communication between neurons, and all other limitations are not so important. Re-
searchers at SynSence invented and patented a two-level communication model based on choosing
the right balance between point-to-point communication between neuron clusters and broadcast
messages within clusters. The company has presented several neuromorphic processors (ASICs):
DYNAP-SE2, DYNAP-SEL and DYNAP-CNN.

The Dynap-SE2 and Dynap-SEL chips are not commercial projects and are being developed
by neuroscientist as tools for their research. But Dynap-CNN (2021 tinyML) is marketed as
a commercial chip for efficient execution of CNNs converted to SNNs. Whereas the Dynap-
SE2 and Dynap-SEL research chips implement analog computing and digital communication,
Dynap-CNN is fully digital.

Dynap-SE2 is designed for feed-forward, recurrent and reservoir networks. It includes four
cores with 1k LIFAT analog spiking neurons and 65k synapses with configurable delay, weight
and short term plasticity. There are four types of synapses (NMDA, AMPA, GABAa, GABAb).
The chip is used by researches for exploring topologies and communication models of the SNN.

Main distinctive features of Dynap-SEL chip are support for on-chip learning and large fan-
in/out network connectivity. It has been created for biologically realistic networks emulation.
The Dynap-SEL chip includes five cores, only one of which has plastic synapse. The chip realizes
1,000 analog spiking neurons and up to 80,000 configurable synaptic connections, including 8,000
synapses with integrated spike-based learning rules (STDP). Researchers are using the chip to
model cortical networks.

The Dynap-CNN chip has been available with the Development Kit since 2021. Dynap-CNN
is a 12 mm2 chip, fabricated in 22nm technology, hosting over one million spiking neurons and
four million programmable parameters. Dynap-CNN is completely digital and realizes linear
neuron model without leakage. The chip is best combined with event-based sensors (DVS) and
is suitable for image classification tasks. In the inference mode the chip can run a SNN converted
from a CNN, in which there may be not more than nine convolutional or fully connected layers
and not more than 16 output classes. On-chip learning is not supported. The original CNN
must be initially created with PyTorch and trained by classical methods (for example, on GPU).
Further, using the Sinabs.ai framework (an open source PyTorch based library), the convolutional
network can be converted to a spiking form for execution on Dynap-CNN in the inference mode.

Dynap-CNN has demonstrated the following results:

• CIFAR-10: 1mJ at 90% accuracy,

• attention detection: less than 50 ms and 10 mW,

• gesture recognition: less than 50 ms and 10m W at 89% accuracy,

• wake phrase detection: less than 200 ms at 98% sensitivity and false-alarm rate less than
1 per 100 hours (office background).

3.8 Akida
Akida [39] is the first commercial neuromorphic processor, commercially available since August
2021. It has been developed by Australian BrainChip since 2013. Fifteen companies, including
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NASA, joined the early access program. In addition to Akida System on Chip (SoC), BrainChip
also offers licensing of their technologies, providing chip manufacturers a license to build custom
solutions.

The chip is marketed as a power efficient event-based processor for Edge computing, not
requiring an external CPU. Power consumption for various tasks may range from 100 µW to 300
mW. For example, Akida is capable of processing at 1,000 frames/Watt (compare to TrueNorth
with 6,000 frames/Watt). The first generation chip supports operations with convolutional and
fully connected networks, with the prospect to add support of LSTM, transformers, capsule
networks, recurrent and cortical neural networks. ANN network can be transformed into SNN
and executed on the chip.

One Akida chip in a mesh network incorporates 80 Neural Processing Units (NPU), which
enables modeling 1,200,000 neurons and 10,000,000,000 synapses. The chip is built at TSMC 28
nm. In 2022, BrainChip announced the second generation chip at 16 nm.

Akida’s ecosystem provides a free chip emulator, TensorFlow compatible framework MetaTF
for transformation of convolutional and fully connected neural networks into SNN, аnd a set of
pre-trained models. When designing a neural network architecture for execution at Akida, one
should take into account a number of additional limitations concerning the layer parameters (e.g.
maximum convolution size is 7, while stride 2 is supported for convolution size 3 only) and their
sequence.

The major distinctive feature is that incremental, one-shot and continuous learning are sup-
ported straight at the chip. At the AI Hardware Summit 2021 BrainChip showed the solution
capable of identifying a human in other contexts after having seen him or her only once. Another
product by BrainChip is a smart speaker, that on having heard a new voice asks the speaker
to identify and after that calls the person by their name. There results are achieved with help
of a proprietary local training algorithm on the basis of homeostatic STDP. Only the last fully
connected layer supports synaptic plasticity and is involved in learning.

Another instructive case from the AI Hardware Summit 2021 was a classification of fast-
moving objects (for example, a race car). Usually, such objects are off the frame center and
significantly blurred but they can be detected using an event-based approach.

4 Memristors
The neuromorphic hardware systems discussed above are based on the existing complementary
metal-oxide-semiconductor (CMOS) technology. There is no direct similarity at the level of
physical mechanisms between CMOS devices and elements of biological neural networks, and
because of this, CMOS devices can only numerically simulate biological neural networks.

The interest in neuromorphic systems that follow the rules of biological learning, has prompted
to explore alternative technologies closer to the biological prototypes. Currently, the most mature
technology of this kind is memristors. A memristor is a two-terminal device capable of changing
its conductivity depending on the voltage/current applied to the terminals. Such an element was
theoretically predicted in 1971, and its practical existence was experimentally demonstrated in
2008. In subsequent years, it was discovered that many materials, mainly at the nanometer scale,
can exhibit memristive properties with different physical mechanisms of conductivity switching
[40].

Now, there are two main directions of memristor usage in neuromorphic applications: vector-
matrix multiplication in memory and spiking neural networks.
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Figure 6: Typical 3×3 memristor crossbar used in neuromorphic applications

4.1 Vector-Matrix Multiplication in Memory
Main operations of classical neural networks, built upon CMOS technology, are as follows: multi-
plication, addition and activation function computation. Weights of neural networks are generally
stored in SRAM or DRAM cells. CMOS circuits are scalable but the available scalability is still
not enough for many neural network applications. Besides, SRAM cell size is too great for
high-density integration, while DRAM cells require periodical refreshing to prevent data loss. In
neural computation, it is frequently needed to extract data from the memory, transfer data to
the computing core, perform computations, and then send the results to the memory through
the same data bus. Such an operation sequence being applied to a large amount of data stored in
the memory causes a significant computation speed limitation and a large power consumption.
This factor substantively limits efficiency of the deep learning technique in the field of big data
[41].

Memristor crossbar circuits make it possible to combine addition, multiplication and data
storage in a single element. Crossbar is a junction of conducting wires, placed perpendicularly
to each other, with memristors positioned at the intersections (see 6). As it is seen, data are
processed and stored in the crossbar. It leads to saving chip space and achieving very low energy
consumption.

Researchers have developed various topologies and training algorithms for memristor based
neural networks. In the study [42] it was demonstrated a one-layer neural network with a
128×64 memristor massive. During The experiment the 89.9% accuracy of image recognition for
MNIST data set was achieved. In [43] researchers demonstrated convolutional neural network
(CNN) based on eight 2048 cells memristor arrays The recognition accuracy for MNIST exceeded
96%. This neuromorphic system outperforms the Tesla V100 110 times in energy efficiency (11
GOPS/W) and 30 times in performance density(1.2 GOPS/mm2). The study [44] demonstrated
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a two-layer recurrent neural network (RNN) based on 14 memristor LSTM blocks. This network
achieved 79.1% accuracy for the task of a human walking classification on the USF-NIST data
set

4.2 Spiking Neural Networks
Hardware demonstrations of SNNs with the use of memristor devices have mostly focused on
the unsupervised learning. Synaptic weights change in accordance with the biologically realistic
STDP rule. It was experimentally shown that if appropriate signal forms are used then memristor
devices can show the weight adaptation behavior similar to STDP. Apart from demonstrations
of singular memristor devices [45], IBM demonstrated an integrated neuromorphic core with
256 neurons, based on CMOS technology, and 65,536 synapses, based on double-pole memristor.
These neurons were capable for on-chip learning with a simplified STDP model. The work of
the device was demonstrated on the problem of patterns autoassociation [46, 47].

Other studies based on selection of switching mechanisms and dynamic parameters of mem-
ristors demonstrated different basic neuromorphic principles such as: symmetric and asymmet-
ric plasticity (STDP), spike-rate-dependent plasticity (SRDP), long-term depression (LTD) and
long-term potentiation (LTP). Their implementations are described in [46]. The memristor tech-
nologies were also used in hardware implementations for the Hodgkin–Huxley, Morris–Lecar and
FitzHugh–Nagumo neuron models. Their implementations are given in [48].

Speaking of the general properties of memristor materials and structures built on their basis,
the following main characteristics valuable for neuromorphic approach should be noted:

• When a current flows through a memristor, there is a change in its physical structure, which
leads to a change in its conductivity. This change of the element itself differs from existing
charge-storage-based memory cells (DRAM, SRAM, Flash, etc.) by its significantly longer
state retention duration. Based on this property, the development of non-volatile resistive
random access memory (ReRAM) is underway, which will have: extended data storage life
time (> 10 years), low operating voltage (< 1 V), a large number of rewrite cycles (> 1017

cycles), low power consumption (10 fJ/bit) [49].

• Memristors can be used both in fully digital (binary) and analog modes. The manifestation
of analog properties is the ability to set a fixed conductivity in a continuous range of values.
Using the analog property it is possible to get an element that is able to store information
in a multilevel mode of conduction states. The number of states in modern memristive
structures reaches 256, which corresponds to 8 bits.

• The conductivity of the memristor depends on the total value and direction of the current
passing through it. This ability allows us to consider the memristor as an element that has
a memory of the value of the passed current.

• Memristor operation timescale may vary from second to nanosecond.

• Memristors can be scaled down to less than 10 nm and made compatible with existing
CMOS technology to achieve high computational density [50].

Despite the fact that memristor technology demonstrates neuromorphic properties at the
elemental level and offers great prospects for a wide range of applications, at the moment the
main researchers of memristors remain academic laboratory centers. In order to make memris-
tor technologies commercially viable several serious problems must be solved. These problems
include: scatter of parameters manufactured by memristors; non-linearity of current-voltage
characteristics; limited conductivity range [51].
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Approach Network In-memory com-
putation

Signal On-device training

Computational modeling on
digital logic

ANN no /
near-memory digital Backprop

SNN Surrogate Gradient / STDP

Memristors ANN yes analog -
SNN STDP

Table 1: A comparison of neuromorphic approaches to synapses modeling

Approach Network In-memory com-
putation

Signal

Computational modeling on
digital logic

ANN no /
near-memory digitalSNN

RC circuit SNN yes analog

Table 2: A comparison of neuromorphic approaches to neuron soma modeling

5 Conclusion
To consolidate all the approaches above, we have prepared the summary tables. Tables 1 and 2
show different approaches to synapses and neuron modeling. Table 3 provides comparison of all
the chips reviewed in this article.
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[40] Luis A Camuñas-Mesa, Bernabé Linares-Barranco, and Teresa Serrano-Gotarredona. “Neu-
romorphic spiking neural networks and their memristor-CMOS hardware implementations”.
In: Materials 12.17 (2019), p. 2745.

[41] Qiangfei Xia and J Joshua Yang. “Memristive crossbar arrays for brain-inspired computing”.
In: Nature materials 18.4 (2019), pp. 309–323.

[42] Miao Hu et al. “Memristor crossbar-based neuromorphic computing system: A case study”.
In: IEEE transactions on neural networks and learning systems 25.10 (2014), pp. 1864–
1878.

[43] Peng Yao et al. “Fully hardware-implemented memristor convolutional neural network”. In:
Nature 577.7792 (2020), pp. 641–646.

[44] Can Li et al. “Long short-term memory networks in memristor crossbar arrays”. In: Nature
Machine Intelligence 1.1 (2019), pp. 49–57.

[45] Yibo Li et al. “Review of memristor devices in neuromorphic computing: materials sciences
and device challenges”. In: Journal of Physics D: Applied Physics 51.50 (2018), p. 503002.

[46] Arindam Basu et al. “Low-power, adaptive neuromorphic systems: Recent progress and
future directions”. In: IEEE Journal on Emerging and Selected Topics in Circuits and
Systems 8.1 (2018), pp. 6–27.

[47] S Kim et al. “NVM neuromorphic core with 64k-cell (256-by-256) phase change memory
synaptic array with on-chip neuron circuits for continuous in-situ learning”. In: 2015 IEEE
international electron devices meeting (IEDM). IEEE. 2015, pp. 17–1.

[48] Changhyuck Sung, Hyunsang Hwang, and In Kyeong Yoo. “Perspective: A review on mem-
ristive hardware for neuromorphic computation”. In: Journal of Applied Physics 124.15
(2018), p. 151903.

[49] Adnan Mehonic et al. “Memristors—From In-Memory Computing, Deep Learning Accel-
eration, and Spiking Neural Networks to the Future of Neuromorphic and Bio-Inspired
Computing”. In: Advanced Intelligent Systems 2.11 (2020), p. 2000085.

[50] Furqan Zahoor, Tun Zainal Azni Zulkifli, and Farooq Ahmad Khanday. “Resistive random
access memory (RRAM): an overview of materials, switching mechanism, performance,
multilevel cell (MLC) storage, modeling, and applications”. In: Nanoscale research letters
15.1 (2020), pp. 1–26.

[51] In Hyuk Im, Seung Ju Kim, and Ho Won Jang. “Memristive devices for new computing
paradigms”. In: Advanced Intelligent Systems 2.11 (2020), p. 2000105.

23


	1 Introduction
	1.1 Von Neumann Architecture
	1.2 Neural Networks based on the Von Neumann Architecture
	1.3 Mitigating Limitations in Modern Computing Systems
	1.3.1 CPU
	1.3.2 GPU
	1.3.3 TPU
	1.3.4 Neuromorphic Approach


	2 Neuromorphic Approaches in Computing Systems
	2.1 Parallelism
	2.2 Asynchrony
	2.3 Impulse Nature of Information Transmission
	2.4 Local Learning
	2.5 Sparsity of Data Streams
	2.6 Analog Computing
	2.7 In-Memory Computing

	3 Neuromorphic Projects
	3.1 TrueNorth
	3.2 Loihi
	3.3 Tianjic
	3.4 SpiNNaker
	3.5 BrainScaleS
	3.6 NeuronFlow
	3.7 DYNAP
	3.8 Akida

	4 Memristors
	4.1 Vector-Matrix Multiplication in Memory
	4.2 Spiking Neural Networks

	5 Conclusion

