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Abstract

Background: Weeds are a major cause of low agricultural productivity. Some weeds have morphological features similar to
crops, making them difficult to discriminate. Results: We propose a novel method using a combination of filtered features
extracted by combined Local Binary Pattern operators and features extracted by plant-leaf contour masks to improve the
discrimination rate between broadleaf plants. Opening and closing morphological operators were applied to filter noise in
plant images. The images at 4 stages of growth were collected using a testbed system. Mask-based local binary pattern
features were combined with filtered features and a coefficient k. The classification of crops and weeds was achieved using
support vector machine with radial basis function kernel. By investigating optimal parameters, this method reached a
classification accuracy of 98.63% with 4 classes in the “bcer-segset” dataset published online in comparison with an
accuracy of 91.85% attained by a previously reported method. Conclusions: The proposed method enhances the
identification of crops and weeds with similar appearance and demonstrates its capabilities in real-time weed detection.

Keywords: precision agriculture; morphological operators; feature extraction; local binary patterns; contour masks; weed

detection; computer vision
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Introduction

Weed infestation poses a threat to the environment, crop yields,
and quality. Weeds in a field retard crop growth by competing
for access to sunshine, water, and nutrients. In particular, the
density, spreading time, and growth characteristics are impor-
tant factors for weed management [1]. One of the most invasive
and serious weeds is wild radish, which causes significant crop
yield losses and low-quality crops owing to its fast growth rate,
contaminants, multiple-herbicide resistance, and vigorous com-
petition [2—-4]. Currently, blanket herbicide spraying is the most
common practice used to eradicate weeds. However, the exces-
sive use of herbicides has negative effects on the environment

in addition to the development of herbicide resistance proper-
ties in weeds. The dramatic challenge for controlling weeds is to
attain an optimal eradication efficacy with minimum herbicide
usage. Note that reducing herbicide application rates decreases
the cost of weed management. Hence, it is a worthwhile objec-
tive in precision agriculture.

Spraying selected weeds automatically in vegetation fields is
considered as a potential method to reduce the environmen-
tal and economic costs of weed management. Wild radish is a
dominant weed in all broadacre field crops, including wheat,
barley, sorghum, maize, and canola. Canola is the most diffi-
cult crop to discriminate against wild radish because of their
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morphological similarity [5]. Therefore, canola, corn, and wild
radish are selected for experimental investigation in this study.
Classifying crops and wild radish plants is a vital practical prob-
lem in agriculture. The ability to accurately detect and classify
weeds in row crops in real time enables the selective applica-
tion of herbicides, thus enhancing the quality and productivity
of crops.

There have been numerous studies on weed-from-crop dis-
crimination. Spectral techniques based on the calculation of
the normalized difference vegetation indices (NDVIs) [6, 7] have
long been proposed for identifying plant species. However, this
method has some deficiencies. In typical farm field condi-
tions, the wind, shadowing, and soil background brightness may
change the spectral features of plants, leading to a reduction in
the discrimination accuracy of NDVI-based weed sensors [8, 9].
Owing to the drawbacks of such spectral reflectance sensors, re-
search on spatial sensors based on the use of image-processing
techniques for the classification of plant species and weeds in
real time has been conducted [10]. One such spatial technique
is “texture analysis” in image processing, which has been ap-
plied in many fields, such as industrial inspection systems, med-
ical image analysis, face recognition, and content-based image
retrieval [11]. There are significant challenges in image texture
analysis, such as noise sensitivity, grey-scale variation, rotation
sensitivity, and illumination and brightness conditions. One of
the discriminative and computationally effective local texture
descriptors that can potentially overcome these issues is local
binary patterns (LBP) [12-14]. The important role of extracting
dominant features is emphasized because poor features com-
bining with even the best classifier are unlikely to achieve good
identification results.

In this article, the LBP method is applied to extract plant fea-
tures owing to its flexibility and robustness in monotonic grey-
level transformation, illumination, scaling, viewpoint, and ro-
tation variance. Furthermore, the LBP method is also a robust
tool for identifying the relationship among the pixels in plant
images and detecting microstructures including lines, spots,
edges, and flat areas [14]. Another attractive feature of the LBP
method is low computational complexity [15]. In fact, the LBP
is computationally less complex than its SIFT or SURF coun-
terparts [16]. Finally, it has exhibited superior performance in
various applications, such as motion analysis [17, 18], texture
recognition [12, 14, 19], face recognition [20-22], face expres-
sion analysis [23, 24], fingerprint recognition [25], and image
retrieval [26, 27].

Numerous studies on the LBP method have been developed
to enhance its discriminative power including completed LBP
[12], extended LBP [28, 29], discriminative completed LBP [30],
dominant LBP with Gabor filtering features [19], pairwise rota-
tion invariant co-occurrence LBP [31], fuzzy LBP [32], robust LBP
[33], noise-tolerant LBP [34], and noise-resistant LBP [35]. How-
ever, these methods still have unsatisfying tolerance to noise
in images and increased feature dimensionality, leading to high
computational complexity [36].

In the agricultural context, the complex and similar mor-
phologies of plant leaves are one of the key challenges to finding
effective and discriminative plant descriptors. Combining LBP
features with other features from different methods has become
an interesting research topic in plant recognition. There have
been several approaches based on applying the LBP method for
the identification and classification of plants. For example, us-
ing LBP, in conjunction with template matching and support vec-
tor machine (SVM), was proposed to classify broadleaf and grass
weed images [37]. These weed images having broad and narrow

leaf shapes were easily distinguished. Similarly, another study
combined LBP, local ternary pattern, and local directional to clas-
sify broadleaf and narrow grass weeds [38]. Another statistical
method for separating sugar beets and weeds has been pro-
posed, based on using shape features [39]. However, this method
was considered accurate only because the sugar beet sizes were
significantly different from those of the weeds. The LBP method
has also been used for crop segmentation to detect occluded
crops (sweet pepper) [40]. However, the detection accuracy was
limited (just 67%). The detection and classification of apple fruit
diseases using global colour histogram, colour coherence vec-
tor, LBP, and complete LBP has been investigated [41]. The clas-
sification accuracy of this method was 93%. Identifying medici-
nal plants was conducted by combining morphological, LBP vari-
ance, and colour features, and the classification accuracy of this
method was 72% [42]. In addition, canola, corn, and radish plants
have been classified using the combined LBP operators and SVM
with a classification accuracy of 92% [43]. These methods are
still deemed unsatisfactory owing to their low classification ac-
curacy.

Some studies have investigated a promising approach to re-
ducing noise and increasing classification accuracy: the combi-
nation of the LBP operators and contours that mask LBP images.
LBP-guided active contour approaches have only been proposed
for texture segmentation [44]. The active contour can identify
the position of the initial curve anywhere in the captured image
and then automatically detect interior contours. By combining
scalar and vector LBP active contours, reduced computational
cost and high segmentation quality can be achieved. However,
typically, this method has been applied in the segmentation pro-
cess. LBP-based edge-texture features for object recognition has
also been proposed [45]. Particularly, discriminative LBP (DLBP)
and local ternary pattern (DLTP) were focused on differentiat-
ing a bright object against a dark background by combining edge
and texture information. Another method for detecting humans
based on non-redundant LBP shape descriptor has been imple-
mented by concatenating a set of local appearance descriptors
extracted at a set of key points. However, occlusion was the main
limitation that made this method impractical [46]. Another LBP
edge-mapped descriptor for face recognition has been investi-
gated [47], whereby LBP was applied on the edge contours (eyes,
nose, and mouth) instead of the whole image; then the LBP in-
tensity was combined with the edge pixel array around the fea-
ture points.

The aforementioned methods have their own drawbacks,
such as unsatisfactory classification accuracy, computational
complexity, application-specific recognition, and not dealing
with occlusion. In the context of this article, we address the
challenge of discriminating broadleaf plant species of relatively
similar morphology by proposing a novel method called “filtered
LBP method with contour mask and coefficient k (k-FLBPCM),”
which enhances plant discrimination capability. The k-FLBPCM
is based on combining filtered LBP features and contour mask-
based features to precisely identify and classify broadleaf plants
in the field. The present k-FLBPCM method has particularly
been applied for the classification of 2 broadleaf plants, namely,
canola (crop) and wild radish (weed), which significantly im-
proves on the accuracy of our previously published article [43].
This article still uses an SVM classifier owing to its good ac-
curacy and relevance to real-life datasets [48, 49]. We use the
“beer-segset” dataset, which comprises a variety of plant images
at 4 defined growth stages, with rotation, scale, and viewpoint
variance, to compare the present results with our previously re-
ported results.
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The excess green minus excess red indices (EXG — ExR) method
was used to segment green plant regions in the bccr-segset
dataset [43]. During segmentation, the noise in plantimages cre-
ates issues in the process of edge detection. However, reducing
the noise level in these plant images plays an important role
in image enhancement for the next stages of feature extraction
and classification.

Morphological image processing is particularly investigated
in this article [50]. Morphological operators are introduced and
extended to analyse images by Serra [51]. Particularly, in mor-
phological analysis, images are treated as sets that illustrate the
plant shapes, represented in grey-scale or binary images. Mor-
phological transformations are a tool that helps extract features
from images using Minkowski addition and subtraction [52]. The
morphological process needs 2 inputs including grey-scale im-
ages and structuring elements. The function of morphology op-
erators is to transform from one set to another with the aim
of searching the special structure of the original set. Then, the
special structure information is stored in the transformed set
and the transformation is recognized by special structuring ele-
ments. As a result, there is a correlation among some character-
istics of the structuring elements.

There are 2 basic morphological operations for binary and
grey-scale images: erosion and dilation. Erosion is defined as
a shrinking transformation, which reduces the size of regions
within the image while expanding the size of holes within the
regions. Dilation is defined as an expansion transformation,
which increases the size of regions within the image while re-
ducing the size of the holes in the regions and gaps between the
regions. It is important to note that the erosion operator filters
the inner image, while the dilation operator filters the outer im-
age. Opening and closing morphological operators, which are an
extension of erosion and dilation operators, are also used, to find
specific shapes in an image. Specifically, the opening operation
comprises the erosion operation followed by the dilation opera-
tion; it helps to smooth the contour of an image and eliminate
small objects. On the other hand, the closing operation tends to
remove small holes and fill gaps in the contours [53]. Note that
morphological operations have gained popularity because they
are useful for the detection of the edge of an image and suppres-
sion of noise.

In this article, opening and closing morphological operators
are applied on grey-scale images, mainly to filter noise [53],
while erosion and dilation operations are used for processing
image edges. I(x, y) is considered as a grey-scale 2D image, and
Sis a structuring element. The erosion of a grey-scale image I(x,
y) by a structuring element S(a, b) is defined as [52, 54] follows:

IeS=min{I(x+a,y+b)—S(ab)}. (1)
The dilation of a grey-scale image, I(x, y), is denoted by
I®S= max{I(x—a,y—b)+S(a b)}. )

Based on the erosion and dilation operators, the opening and
closing of the image I by the structuring element S are respec-
tively defined as follows:

lIoS=(le9S®l, €

I.S=(I®S)eS. (4)

In this article, the first step is to select structuring elements,
which are regarded as matrices and able to measure the shape
of the image. In addition, choosing the shape and size of the
structuring element is based on the condition and processing
demand of the image. We used a 5 x 5 square structuring ele-
ment to input the opening and closing morphological operators
for filtering. The opened and closed images were then converted
to binary images by using thresholds for next features extraction
and classification processes.

The LBP algorithm was introduced by Ojala et al. 1996 [55]. The
LBP operator has been developed to detect textures or objects in
images for a long time. It is considered a robust texture descrip-
tor for analysing images because of its capability to represent
plant discriminative information and computational efficiency
[55]. It is also one of the best texture descriptors and has been
effectively used in various applications. The potentials and ef-
fectiveness of LBP have been presented in identifying objects,
recognizing faces and facial expressions, and classifying demo-
graphic characteristics. In this article, the LBP operator is par-
ticularly used for leaf description owing to its effectiveness in
pattern description.

The main limitation of the previously reported LBP opera-
tor was to cover only a small 3 x 3 neighbourhood, thus fail-
ing to capture dominant textural features in images with large-
scale structures. To overcome this drawback (i.e., improve the
LBP operators), the number of pixels and the radius in the cir-
cular neighbourhood have been increased [14]. Typically, it is
more flexible and effective to enhance the performance of the
LBP method by using textures of different scales. Generally, the
value of the LBP code of a centre pixel (x, y.) can be calculated
as follows [14]:

P-1 1,x>0

LBPp g = Zp:o s(9p — 8c) 2P wheres (x) = 0x<0 (5)

where g is the grey value of the central pixel and g, indicates
the grey values of the circularly symmetric neighbourhood from
p=0toP —1and g, = Xprp. In addition, P stands for the num-
ber of surrounding pixels in the circular neighbourhood with the
spatial resolution of the neighbourhood R. Also, s(x) symbolizes
the thresholding function, which helps the LBP algorithm to gain
illumination invariance against any monotonic transformation.
The probability distribution of the 2P LBP patterns represents the
characteristic of the texture image. The mentioned parameters
of the LBP algorithm control how patterns are computed for each
pixel in input images.

Rotating an image causes diverse LBP codes. Therefore, LBP
codes need to rotate back to the position of the reference pixelin
order to invalidate the results of translating a pixel location and
generate multiple identical versions of binary codes. To address
the problem of the image rotation effect, a rotation-invariant LBP
has been defined as follows [14, 56]:

LBPY ; = min {ROR(LBPp &, i) [i =0, 1,...,P —1}, ©)

where the function ROR(x, i) performs an i-step circular bit-wise
right shift on the P-bit number x. The rotation-invariant LBP is
formed by circularly rotating the basic LBP code and keeping the
rotationally unique patterns that result in a significant reduction
in feature dimensionality.
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For uniform patterns, LBPp r refers to the number of spa-
tial transitions in the patterns and the LBPY; patterns need to
have at most 2 bitwise transitions from 0 to 1 or vice versa. As
for a given pattern of P bits, the uniform descriptor produces
P(P — 1) + 3 output bins, which consist of P(P — 1) + 2 bins
for distinct uniform patterns, and a single bin (P + 1) assigned
to all non-uniform patterns. To overcome poor discrimination,
due to the crude quantization of angular space at 45° intervals,
the rotation-invariant uniform descriptor LBPYY?, which has a U
value of <2, is defined as follows [14]:

Y p=05(9p — ). if U (LBPpg) <2

LBPriuZ — 7
P.R { P +1, if U (LBPp g) > 2 @)

The other patterns are labelled “miscellaneous” and grouped
into a single value. To map from LBPy  to LBPLY, the rotation
invariant uniform descriptor has (P + 2) distinct output pat-
terns. Correspondingly, the LBP{Y2, LBP{Y2 and LBPL2 opera-
tors have 10, 18, and 26 bins, respectively.

After the dominant features are extracted using the LBP method,
the next stage is classification. There are several different clas-
sification methods, including decision trees, SVM, neural net-
works, k-nearest neighbour method, and the Bayesian classifier.
One of the efficient classification methods is SVM, due to its
high performance in many applications, such as face recogni-
tion [57, 58], weed identification [59, 60], and disease detection
in plant leaves [61, 62]. Therefore, the optimal combination of
the LBP descriptors and the SVM classifier can lead to high plant
discrimination accuracy. Furthermore, the SVM method has be-
come widespread for classifying objects. It is also regarded as
an effective and robust supervised classifier owing to its capa-
bility of dealing with pattern recognition problems in image pro-
cessing and preventing over-fitting and noise data [63, 64]. SVM
was originally introduced in 1992 [65] and then significantly ex-
tended by many other researchers. A binary classification SVM
was first proposed [66]. Given a training dataset of images (x;, yi),
where x; € Re fori=1, 2, 3... N (images) with a label y; € {-1, 1},
the SVM binary classifier f(x) predicts a label y as follows [66]:

>0y =+1

IO S ©

For example, y; f(x) > 0is considered as a correct classifica-
tion. The optimization problem solved for binary classification is
formulated as follows [65, 67]:

. 1 1
min, pe = EwTw +C Zi: R ©)

subject to the constraint y;(wT¢(x) +b) > 1 — —& withg > 0,1 =
1, ... L

According to Equation (9), the training data x; are mapped
into a higher dimensional space by the function ¢ and every con-
straint can be satisfied if §; is sufficiently large. In addition, C > 0
is the regularization parameter, w is known as the weight vector,
and b is the bias. The SVM method generates an optimal hyper-
plane with the maximal margin between classes in the higher
dimensional space. A kernel function K (x;, x;) is represented as
#(xi)T¢(x;) and 2 kernels including polynomial and radial basis

function (RBF) are applied in this article. The polynomial and
RBF kernels with kernel parameters y, r, d are given by [68]

Polynomial SVM : K (x.%j) = (yxx; +r)d, y > 0, (10)
RBF SVM : K (x;, Xj) = exp (—y||xi —Xj Hz) Ly > 0. (11)

Kernel selection has long been a problem. In this article, a
study is conducted using independent test sets to compare ker-
nels and select the best one.

As mentioned by Le et al. [43], all data were captured on a
custom-built testing facility in Fig. 1 at ESRI (Electron Science
Research Institute), Edith Cowan University, Australia. Particu-
larly, a Xilinx Zynq ZC702 development platform [65] captured
HD images (1,920 x 1,080 pixels) at 60 frames per second and
used an On-Semi VITA 2000 camera sensor. All images captured
by the camera had a spatial resolution of ~1 mm/pixel and size
of 228 x 228 pixels, which were down-sampled by a factor of 2
from a size of 456 x 456 pixels. Moreover, the vertical height of
the camera above the surface of the plant pots was 980 mm and
the camera focal length was 9 mm.

In this article, we continue to use the bccr-segset dataset to
compare the performance of the novel combination of the LBP
algorithm and contoured mask with coefficient k with that of
the combined LBP operators reported by Le et al. [43]. In addi-
tion, a new dataset of broadleaf images including only canola
and radish leaves is captured to objectively evaluate the detec-
tion capability of the proposed approach.

In the previous article [43], 3 different LBP operators
LBP{Y42, LBPHYZ, and LBPS}2 and the SVM method were combined
to detect and classify broadleaf and narrow-leaf plants. The
results confirmed that the classification accuracies between
broad and narrow leaves were higher than those between
broadleaf groups. The recognition of leaves is based on the
observation of their morphological features such as texture and
shape. According to our bcer-segset dataset, canola and radish
plants belong to the broadleaf group, develop as a rosette, and
have lobes. However, there are some differences between leaf
shapes on the canola and radish plants. When the edge of
each leaf is observed closely at the third stage in Fig. 2, canola
leaves have outward-pointing teeth and radish leaves have
a rounded shape with curved-toothed edge. In other words,
from the glossary of leaf morphology, the leaf margin of canola
is sinuate while the edge of radish is undulate with a wavy
edge, shallower than sinuate [69]. For canola leaves at the
fourth growth stage, their lobes are often completely separated
towards the base of the leaf. With regard to older radish leaves,
they have a larger rounded lobe at the tip of the leaf, some
pairs of side lobes, and each set is progressively smaller toward
the base.

To overcome the limitation of the combined LBP operators
in the previous article, a novel method has been developed for
amplifying the dominant features of canola and radish leaves.
The flow chart below describes this method in detail.

To begin with, we input the becr-segset dataset into the plant
classification program. The dataset was processed in 2 branches:
(i) the dataset was input to the feature extraction block with-
out applying the morphological operations, and (ii) the dataset
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Figure 1: A high-speed testbed system used for controlled data capture [43]. This system has two components including (Plant Discrimination Unit) PDU based on

spectral reflectance techniques and a Xilinx Zynq ZC702 development platform.

Canola

Figure 2: Full and zoomed-in images of canola and radish leaves in the third stage.

applied the morphological opening and closing, and generated
contour masks with different thicknesses as shown in Fig. 3. To
be more specific in the second branch, a 5 x 5 morphological
filter was created to implement the morphological opening and
closing on all plant images in the dataset. By selecting a thresh-
old, grey-scale images were converted into binary images to get
better accuracy. Here, we masked all plantimages with contours,
i.e.,, boundaries around selected plant images. The findContours

Radish

function and drawContours function in OpenCV were used, and
then all the masks of plant images of different thicknesses were
stored. This eliminates the need to recalculate when the thick-
ness was changed.

The next stage of both branches was going through the
feature extraction block. Particularly, LBP features were com-
puted for full images in the mentioned dataset by incorporating
LBPSY? 4 LBP{Y2 4 LBP42 operators, which are accumulated into
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6 | Filtered local binary pattern method with contour mask and coefficient k detects similar crops vs weeds

Input the image path to access the “becr-segset”
dataset

L2

f Image pre-processing —l

Plant images without morphological Apply morphological opening and
filters closing
v
Generate contouring masks with all
- different thicknesses
Feature extraction
+  Calculate LBP features for full v
images ing the combined Feature extraction
LBagmby;ps)lng *  Calculate LBP features for full
*  Remove bins with the highest images by applying the combined
values in each LBP operator LBP operators
¢ Remove bins with the highest
values in each LBP operator
2
LBP features without contour masks LBP features with contour masks
(pass_features) (cmask_features)

L combined_features = cmask_features+ J

k*pass_features

v

Apply 5-fold cross validation

v

SVM classi fier with RBF kernel

v

Generate different hyper-parameters (C and y)
and coefficient k to optimize the classifier

v

Generate models and prediction

v

Plant discrimination

Figure 3: A flow chart describing the procedures of the novel method through steps, namely, filtering LBP bins, extracting features, masking images based on contours,

and classifying plant leaves.

a histogram of P + 2 bins (with P = 8, 16, 24 corresponding to each
LBP operator). Each bin denotes an estimate of the probability of
encountering the corresponding pattern in the plantimage. The
discrete histograms of the LBPIYZ operators were calculated over
plant images. Note that it is not necessary for all bins in the LBP
histogram to contain useful information for plant leaf detection.
It is observed that for the LBP histograms of plant images at the
bin level, the ninth bin of LBPFY?, the 17th bin of LBP{Y, and the

25th bin of LBPY}'2 contain a much higher number of hits than the

remaining bins from the LBP histogram. A further investigation
shows that the LBP values for these bins correspond to patterns
that have no pixel variations. For example, all pixels are constant
values such as the values of background pixels. However, the re-
mainingbins correspond to LBP patterns that mainly capture the
intensity variations of green pixels (plant leaves). Therefore, bins
P+ 1 (the ninth bin of LBPIY, the 17th bin of LBP!¥2, and the 25th
bin of LBP4}'2) were removed from each LBP histogram in order to
better scale the remaining bins. According to the combination of
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Figure 4: (a) An original canola leaf image and its LBP histograms corresponding to the LBPQ‘{Z, LBPIY?, and LBP;;‘?3 operators. (b-d) LBP images, LBP images with

riu2

contour masks, and their original LBP histograms and filtered LBP histograms are presented by implementing LBP}32, LBPjg5, and LBP‘;;% operators, respectively.
Multiresolution analysis can be achieved by altering P and R of LBP operators and then combining these operators as shown in Fig. 5.

3 different spatial resolutions and different angular resolutions
in LBP operators, 3 bins including ninth, 27th, and 53rd were re-
moved in the joint histogram of the LBP§3” + LBP}3 -+ LBPLY2 op-
erator (10 bins + 18 bins + 26 bins = 54 bins). After applying the
LBPYY2 4 LBPEZ 4 LBPYY2 operator for the plant images, the re-
sultant images were called as LBP images.

Fig. 4 illustrates an example of the process shown in the flow
chart (Fig. 3). In Fig. 4a we show an original canola leaf image and
its 3 histograms corresponding to the LBP5Y?, LBP{2, and LBP4;3
operators. The ninth, 17th, and 25th bins in each operator have
the highest level of the distribution of patterns. The LBP-based
canola leaf image and contour mask, the original histogram, and
the filtered histogram of the contour masks are shown in Fig. 4b-
d with the LBPSY?, LBP}Y2 , and LBP;3 operators, respectively. It
is apparent that the feature distribution is easily observed in the
other bins of the LBP histogram with bin removal. Interestingly,
dominant features such as edge and corner patterns in other
bins can be seen clearly by removing some specific bins (ninth,

17th, and 25th bins) in the LBP histograms. Similarly, plant fea-
tures in the histogram of the LBP-based contour mask with bin
removal also present their significance. It is noted that the bin
number of the LBP histogram in Fig. 4, calculated in a Python
code, has an index range from 0 to [(P + 2) — 1] bins. Note that
the bin number mentioned in this article ranges from 1 to P + 2.
For example, the LBP{Y2 operator has an index range from 0 to 9
but bin number from 1 to 10.

As shown in Fig. 3, the filtered LBP features without con-
tour mask in plant images are denoted as "pass_features.” The
method used to generate images is referred to as the filtered LBP
method (FLBP). The FLBP method is applied to the plant images,
and results in 51 features are calculated over the entire image.
The FLBP-based contour masks are denoted as "cmask_features.”
The method used to create images consisting of cmask_features
is referred to as the filtered LBP-based contour mask (FLBPbCM).
Applying the FLBPbCM method to the plant images also results
in 51 features computed only on the contours. The remaining
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Figure 5: Four different LBP histograms of a canola leaf image. (a) combining 3 operators (LBPQ‘{Q, LBP{%’%, and LBPLY2). (b) A filtered and joint histogram is generated
by eliminating the ninth, 27th, and 53rd bins in the joint histogram. (c) A joint cmask histogram is generated by applying the LBP method with a contour mask. (d)

Removing the ninth, 27th, and 53rd bins in the joint cmask histogram.

region in the image is set to the maximum value (255) in the LBP
matrix and ignored when generating the LBP histogram.

The novelty of the present k-FLBPCM is a combination of
pass_features and cmask features. Owing to the high bin values
in the FLBP method as shown in Figs 4 and 5, cmask_features
are scaled by multiplying pass_features by coefficient k in the k-
FLBPCM method. For example, Table 1 shows the distributions
of patterns (bin values) in a typical canola image. It demon-
strates that by combining the pass_features (in the FLBP method)
and cmask_features (in the FBLPbCM method), the bin values
of the k-FLBPCM method have better balance between these 2
feature sets. The purpose of multiplying coefficient k (k < 1) by
pass_features is to reduce the gap between the bin values of the
cmask_features and pass_features.

After the feature extraction step, the plant images are classi-
fied by using SVM kernels. Initially, 5-fold cross-validation was
used to divide the dataset into 5 subsets. Owing to the different
plant growth stages in the dataset, images at each growth stage

are equally divided in each subset as well. A single subset of the
dataset is used for testing while the remaining 4 subsets of the
dataset are used for training. The cross-validation process was
iteratively applied 5 times, with the test subset changed each
time. This procedure helps to prevent overfitting. After generat-
ing the training model by selecting the RBF kernel in SVM and
making predictions, the classification accuracies of the methods
were calculated by using performance metrics such as accuracy,
precision, recall, and F1-score.

Results

The results are divided into 2 sections. The first section presents
the average classification accuracies of the broadleaf classes
consisting of canola and radish. The effectiveness of the pro-
posed k-FLBPCM method is evaluated on the basis of factors
including feature extraction (by comparing among the FLBP,
FLBPbCM, and k-FLBPCM methods), different SVM kernels (the
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Table 1: The bin values of a typical canola image using FLBP, LFBPbCM, and the combined k-FLBPCM methods

Bin values of different methods Bin 1 Bin 2 Bin 3
FLBP 1212 913 355
FLBPbCM 122 121 96
k-FLBPCM with k = 0.5 728 577.5 273.5

Bin 4 Bin 5 Bin 6 Bin 7 Bin 8 Bin 10
727 680 1351 305 402 974
259 275 143 45 33 139

622.5 615 818.5 197.5 234 626

Table 2: The average classification accuracy score of the k-FLBPCM, FLBPbCM, and FLBP methods with the second-order polynomial and RBF

kernels

C y Thickness Method

10 1E-05 2 k-FLBPCM method, k = 0.5
10 1E-05 2 k-FLBPCM method, k = 0.2
10 1E-05 2 k-FLBPCM method, k = 0.1
60 1E-06 2 k-FLBPCM method, k = 1
60 1E-06 2 k-FLBPCM method, k = 0.5
60 1E-06 2 k-FLBPCM method, k = 0.2
10 1E-05 No thickness FLBP method

60 1E-06 No thickness FLBP method

10 1E-05 2 FLBPCM method

60 1E-06 2 FLBPCM method

Table 3: The average accuracy scores of the k-FLBPCM method with
the RBF kernel, varying C, y, and the coefficient k

Accuracy
C y Thickness  k-FLBPCM method score (%)
30 1E-05 2 k=02 97.50
60 1E-06 2 k=1 97.50
60 1E-05 2 k=02 97.49
100 1E-05 2 k=0.2 97.45
100 1E-06 2 k=1 97.42
30 1E-06 2 k=1 97.42
100 1E-06 2 k=0.7 97.40
30 1E-05 2 k=0.5 97.37
100 1E-06 2 k=0.8 97.35
60 1E-06 2 k=028 97.34

second-order polynomial kernel and RBF kernel), contour thick-
ness, and LBP parameters P (the total number of the neighbour-
ing pixels) and R (the radius), as well as the coefficient k. In the
second section, the parameters (C, y, coefficient k, and thick-
ness) for the classification of all 4 classes in the bccr-segset
dataset including canola, corn, radish, and background are opti-
mized to obtain improved classification accuracy. The computer
used in these experiments had a 3.4 GHz processor and 16 GB
RAM and ran Python 2.7.13.

Canola and radish images were taken from the bccr-segset
dataset. The train and test sets of canola and radish classes
consist of 15,000 images (7,500 images in each class). After ap-
plying the FLBP, FLBPbCM, or k-FLBPCM method, SVM was used
to classify the 2 broadleaf classes including canola and radish
plants. The classification accuracies of the second-order poly-
nomial kernel and the RBF kernel were compared. In this ex-
periment, C = 10, 60, y = 10~> , 10~°, and thickness = 2 were

Accuracy score

Polynomial kernel of degree 2 (%) RBF kernel (%)

95.46 97.32
94.91 97.32
94.27 96.40
94.92 97.50
94.56 96.89
93.55 96.06
93.53 95.36
93.74 96.72
88.53 94.07
88.26 94.83

selected. The values of C and y selected were typical values, be-
fore any optimization had been performed.

The results of using 2 SVM kernels (the second-order poly-
nomial and RBF kernels) on the given dataset for classification
are summarized in Table 2. In particular, the average classifi-
cation accuracy of the k-FLBPCM method (C = 10, y = 107> ,
k = 0.5, and 0.2) with the RBF kernel was 97.32%, followed by
96.40% corresponding to the k-FLBPCM method with coefficient
k = 0.1. Meanwhile, the average classification accuracy of the
k-FLBPCM method (C = 10, y = 10~ , k = 0.5) with the second-
order polynomial kernel was just 95.46%. Similarly, the case (C
=60, y = 10°) of the k-FLBPCM method with the RBF kernel
was also higher than the polynomial kernel of degree 2. In ad-
dition, the FLBP method with the RBF kernel had a higher clas-
sification rate than the polynomial kernel. As for the FLBPbCM
method (C = 10, y = 107 ), the RBF kernel had a classification
accuracy of 94.07% in comparison to the second-order polyno-
mial kernel at 88.53%. These results show the RBF kernel, which
nonlinearly maps features into a higher dimensional space, re-
sulting in higher classification accuracy for all 3 methods (FLBP,
FLBPbCM, and k-FLBPCM).

A second experiment was conducted to investigate the ef-
fects of the hyper-parameters C and y, as well as the coefficient
k, on the classification accuracy of canola and radish images.
Various pairs of (C, y) values were tried and good results were
obtained with exponentially growing sequences of C and y [70].
Therefore, we chose the ranges of C, y and coefficient k as fol-
lows: C = 1, 10, 30, 60, 100, 1,000, y = 10~%, 10~>, 107, 10~7.In
addition, as mentioned in the Methods section, we selected k (k
< 1) randomly from 0.1 to 1 (k = 0.1, 0.2, 0.5, 0.7, 0.8, and 1.0).
We tested all these values in the experiments to observe the
variation of values and chose an optimal set k, C, and y when
these parameters reach the highest classification accuracy. As
reported in Table 3, the k-FLBPCM method had the highest clas-
sification accuracy, averaged over the 5-fold cross- validation, in
the first pair (C = 30, y = 107>, thickness = 2, k = 0.2) and the
second pair (C = 60, y = 10~°, thickness = 2, k = 1), at 97.50%. In
addition, the average classification accuracies of the k-FLBPCM
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Figure 6: The average classification accuracies of the k-FLBPCM method with different coefficients k.

method with different parameters were sorted from high to low.
Owing to the large number of combinations possible, only the
top 10 cases are listed in Table 3. Owing to the low accuracy of
using y = 107, the parameter y should be <10~° to improve the
classification accuracy of the k-FLBPCM method.

Although all experiments were conducted with different co-
efficients k, this parameter should be <1. We find that k < 1 re-
sults in optimal accuracy. As shown in Fig. 6, the average classi-
fication accuracies of the proposed k-FLBPCM method with k <
1 were higher than those with k > 1.

i. Comparing the FLBP, FLBPbCM, and k-FLBPCM methods

To check the effectiveness of the k-FLBPCM method in a differ-
ent dataset, a new set of canola and radish images in 4 different
growth stages was collected and designated “can-rad” dataset
(published online). A total of 19,600 broadleaf images (9,800 im-
ages in each class) were collected at 4 different growth stages.
The parameters C = 10, 30, 60, 100, 1000, y = 10~> , 10~°, and
thicknesses from 1 to 8 were selected. Note that the SVM clas-
sifier was used only with the RBF kernel in the remaining parts
of the experiments. Furthermore, only the 10 highest classifi-
cation accuracies for each method are listed in Tables 3-5 and
the average classification accuracy scores are sorted from high
to low.

As can be seen from Tables 4 and 5, the classification accu-
racy of the FLBP method was 95.13% with C = 100 and y = 107°,
while that of the FLBPbCM method was 93.95%, lower than the
FLBP method. However, when combining the FLBP and FLBPbCM
methods (in k-FLBPCM method), the classification accuracy was
significantly higher. Table 6 shows that the highest average clas-
sification accuracy of the k-FLBPCM method was 96.21%.

ii. Effects of the contour thickness on the classification accuracy
Next, we evaluated the average classification accuracy of the k-
FLBPCM method for varying the thicknesses of the contour lines.
The can-rad dataset was used for this investigation. We selected
C =10, 30, 100, y = 10>, coefficient k = 0.5, and thickness from
1 to 8. As can be seen in Fig. 7, 2 images of canola and radish
with varying contour thickness are presented at the third growth
stage.

Table 4: Classification accuracy of the FLBP method

Classification accuracy of

C y the FLBP method (%)
100 1E-06 95.13
1,000 1E-06 95.03
60 1E-06 94.96
30 1E-06 94.92
10 1E-06 94.31
1,000 1E-07 93.92
10 1E-05 93.78
30 1E-05 93.67
60 1E-05 93.62
100 1E-05 93.61

Table 5: Classification accuracy of the FLBPbCM method

Classification accuracy of

C y Thickness the FLBPbCM method (%)
30 1E-05 8 93.95
30 1E-05 7 93.95
100 1E-05 2 93.94
30 1E-05 6 93.88
30 1E-05 5 93.88
10 1E-05 8 93.88
10 1E-05 7 93.88
1,000 1E-05 2 93.87
60 1E-05 6 93.87
100 1E-05 6 93.81

The average classification accuracies of the k-FLBPCM
method for different thicknesses are reported in Fig. 8. Our pro-
posed k-FLBPCM method attained optimal discrimination be-
tween canola and radish at contour thickness of 2 with an ac-
curacy of 96.19% (C = 30, y =107° ), while the lowest accuracy
was 95.73% with thicknesses of 7 and 8. These 2 broadleaf plants
displayed morphological similarity at a contour thickness of 2.
As shown in Fig. 7, for thickness >2, the leaf features were
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Table 6: Classification accuracy of the k-FLBPCM method

1,000
30
10
30
30
60
10
10
30
30

14

1E-06
1E-05
1E-05
1E-05
1E-05
1E-05
1E-05
1E-05
1E-05
1E-05

Canola-Stage 3

k-FLBPCM
Thickness method

2 k=0.5
2 k=05
2 k=05
4 k=05
3 k=05
2 k=05
4 k=05
3 k=05
2 k=0.2
4 k=0.2

Contour mask-Thickness 1

Contour mask-Thickness 4

Classification
Accuracy (%)

96.21
96.19
96.18
96.16
96.16
96.15
96.14
96.14
96.13
96.11

Contour mask-Thickness 2

Contour mas|

smoothed by the thick edge, while for a thickness of 1, the edge
features were too thin to fully show the difference between the
undulate and sinuate patterns.

The k-FLBPCM method was evaluated on the full bccr-segset
dataset, which included 30,000 plant images in 4 classes (canola,
corn, radish, and background) under different rotations, scales,
and illumination conditions. Plant images were taken under dif-
ferent rotation angles (45°, 90°, 135°, 180°, 225°, 270°, 315°, 360°),
lighting conditions (sunlight and fluorescent), sizes, and mor-
phologies of plants through 4 growth stages, as illustrated in

Contour mask-Thickness 2

Contour mask-Thickness 3 Contour mask-Thickness 4 Contour mask-Thickness 5

Contour mask-Thickness 7 Contour mask-Thickness 8

Figure 7: Canola and radish at the third stage with varying thicknesses of the contour lines.
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C=100, Gamma=1E-5 95.83% 96.09% 96.02% 96.02% 95.79% 95.79% 95.59% 95.59%

Thickness

Figure 8: The average classification accuracies of the k-FLBPCM method (coefficient k = 0.5) for different contour line thicknesses and 4 growth stages.
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Figure 9: The “beer-segset” dataset and its 4 growth stages. The average classification accuracies of the FLBP, FLBPCM, and k-FLBPCM methods are listed in Table 7. Note
that, in this investigation, the following typical values were selected: C = 30, 60, 100 and y = 10~ , 10-°. The k-FLBPCM method again achieved the highest accuracies
among all compared methods, confirming the results in the given “can-rad” dataset.

Table 7: Comparison of the average classification accuracies of the
FLBP, FLBPCM, and k-FLBPCM methods

Accuracy
C y Thickness Method score (%)
30 1E-05 2 k-FLBPCM, k = 0.2 98.63
60 1E-05 2 k-FLBPCM, k = 0.2 98.61
100 1E-06 2 k-FLBPCM, k = 0.8 98.61
30 1E-05 No thickness FLBP 97.23
60 1E-05 No thickness FLBP 97.22
100 1E-06 No thickness FLBP 98.17
30 1E-05 2 FLBPCM 97.04
60 1E-05 2 FLBPCM 97.14
100 1E-06 2 FLBPCM 96.01

Table 8: Average classification accuracies of the k-FLBPCM method
for different C and y parameters and coefficients k

Accuracy
@ y Thickness  k-FLBPCM Method score (%)
30 1E-05 2 k=0.2 98.63
100 1E-06 2 k=0.8 98.61
100 1E-05 2 k=0.2 98.61
60 1E-05 2 k=0.2 98.61
100 1E-06 2 k=1 98.60
60 1E-06 2 k=08 98.58
60 1E-06 2 k=1 98.57
1,000 1E-06 2 k=05 98.56
30 1E-06 2 k=1 98.56
1,000 1E-06 2 k=1 98.51

Fig. 9. The number of plant images at each class and each growth
stage is indicated in Fig. 9 [43].

In order to find optimal (C, y) pairs, we investigated the
following parameter ranges: C = 1, 10, 30, 60, 100, 1,000, y =
10->, 10°%,k = 0.1, 0.2, 0.5, 0.8, 1, and thickness of 2. Only the
10 highest classification accuracies of the k-FLBPCM method are
listed in Table 8. This method attained the highest classification
accuracy of 98.63% with C = 30, y = 10, and coefficient k = 0.2.

The k-FLBPCM method can classify plant images with differ-
ent conditions, as shown in our 2 datasets, and improve the clas-

sification accuracies achieved previously [43]. Particularly, there
is a significant improvement in performance when combining
LBP features with a contour-based mask. The average classifica-
tion accuracies of the k-FLBPCM method have increased over the
previously described method by up to 6.78% [45].

The F1-score results for each class are indicated in Table 9.
Particularly, the F1 scores of the k-FLBPCM method significantly
increased to 97.40% and 97.40% for canola and radish, from
84.41% and 83.43%, respectively, which had used combined LBP
operators in the previously published article [45]. In addition, the
testing time (millisecond/image) of the k-FLBPCM method was
faster than that of the combined LBP method [45].

With the aim of reducing the misclassification, we inves-
tigated the misclassified images through visual inspection as
shown in Fig. 10. The first-stage plants (Fig. 10a—c) appear to have
been misclassified owing to the close morphological similarities.
In addition, deformity of the leaves and stems, especially aris-
ing from perspective distortions (Fig. 10e and f) and leaf diseases
(Fig. 10d), can also lead to identification errors. However, the k-
FLBPCM method considerably reduced the number of misclas-
sified images and outperformed other methods, obtaining the
high classification accuracy at 98.63%.

In this article, the k-FLBPCM method combining LBP feature ex-
traction with contour masks has been proposed for reducing
noise and improving plant classification accuracy. Results have
shown that various factors can reduce weed identification ac-
curacy, including outdoor scene complexity and morphological
variability of plants. On the basis of the experimental results, the
k-FLBPCM method had the best performance of 98.63% accuracy
in identifiying morphologically similar plants. This method is
particularly useful to discriminate between 2 classes with highly
similar morphologies while tolerating morphological variabil-
ity within each class. Furthermore, results have shown that the
execution time of the proposed method is faster than that of
the combined LBP method in the previous published article. As
a result, the proposed method helps to improve classification
of plants with similar morphological features. Furthermore, the
fast processing time of this method enhances the ability to im-
plement plant detection in real time.
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Table 9: Comparison of performance metrics between the k-FLBPCM and combined LBP methods for each class

Method SVM kernel Classes

k-FLBPCM RBF kernel Background
Canola
Corn
Radish
Combined LBP operators LBP(8,1) + RBF kernel Background
LBP(16,2) + LBP(24,3)
Canola
Corn

Radish

can2S1-r2-57_b0.bmp

S0 S0
100 100
150 150
200 200

0 S0 100 150 200 0 50 100
Canola misdassified as Radish
rad154-r14-606_b0.bmp
. 0

S0 S0
100 100
150 150
200 200

0 50 100 150 200 0 50
Radish misclassified as Canola

rad2251-r4-125_b0.bmp

Radish misclassified as Canola

rad11S3-r8-448_bl.bmp

Testing time

Precision (%) Recall (%) F1-score (%) (ms/image)
100 100 100 0.491
96.80 97.60 97.40
100 100 100
97.60 97.20 97.40
96.17 98.87 97.50 1.419
83.64 85.20 84.41
98.64 96.87 97.75
84.69 82.27 83.46

rad1251-r7-293_bl.bmp

100
150
150 200 0 50 100 150 200
Radish misclassified as Canola

can1S3RN1-r2-71_b0.bmp

100

150

100 150 200 0 50 100 150 200
Radish misclassified as Canola

Canola misdassified as Radish

Figure 10: Misclassified images are printed from the model of the k-FLBPCM method with C = 30, y = 10>, and k = 0.2.

Future research might consider the potential of the k-
FLBPCM method in diverse applications in order to identify ob-
jects of similar morphologies. Morphological cell analysis plays
animportantrole in supporting pathologists to accurately detect
cancer cells [71, 72]. The advantage of the k-FLBPCM method is
that image data can be reused for extracting morphological fea-
tures and identifying abnormal cells.

Project name: k-FLBPCM-method

Project home page: https://github.com/vinguyenle/k-FLBPCM
-method

Operating system: The code of the k-FLBPCM method was writ-
ten on Linux.

Programming language: Python 2.7.13

License: GNU General Public License v3.0

RRID:SCR_017973

All data are available at the provided links.
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https://github.com/vinguyenle/k-FLBPCM-method
https://scicrunch.org/resolver/RRID:SCR_017973

Bcer-segset dataset: https://data.pawsey.org.au/download/We
edvision/public/LBP- SVM-analysis/bccr-set/beer-segset%20da
taset.rar

Can-rad dataset: https://data.pawsey.org.au/download/Weed
vision/public/LBP-SVM-analysis/bcer-set/can-rad_dataset.rar.
Snapshots of our code and other supporting data can be found
in the GigaScience repository, GigaDB [73].

DLBP: discriminative LBP; DLTP: discriminative local ternary pat-
tern; EXG — ExR: excess green minus excess red indices; FLBP:
filtered LBP; LBP: local binary pattern; NDVIs: normalized dif-
ference vegetation indices; RAM: random access memory; RBF:
radial basis function; SIFT: scale-invariant feature transform;
SURF: speeded-up robust features; SVM: support vector ma-
chine.
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