
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

176,000 190M

TOP 1%154

6,500

Chapter

Cortical Columns Computing
Systems: Microarchitecture Model,
Functional Building Blocks, and
Design Tools
John Paul Shen and Harideep Nair

Abstract

Reverse-engineering the human brain has been a grand challenge for researchers in
machine learning, experimental neuroscience, and computer architecture. Current
deep neural networks (DNNs), motivated by the same challenge, have achieved
remarkable results in Machine Learning applications. However, despite their original
inspiration from the brain, DNNs have largely moved away from biological plausibil-
ity, resorting to intensive statistical processing on huge amounts of data. This has led
to exponentially increasing demand on hardware compute resources that is quickly
becoming economically and technologically unsustainable. Recent neuroscience
research has led to a new theory on human intelligence, that suggests Cortical Col-
umns (CCs) as the fundamental processing units in the neocortex that encapsulate
intelligence. Each CC has the potential to learn models of complete objects through
continuous predict-sense-update loops. This leads to the overarching question: Can we
build Cortical Columns Computing Systems (C3S) that possess brain-like capabilities as
well as brain-like efficiency? This chapter presents ongoing research in the
Neuromorphic Computer Architecture Lab (NCAL) at Carnegie Mellon University
(CMU) focusing on addressing this question. Our initial findings indicate that design-
ing truly intelligent and extremely energy-efficient C3S-based sensory processing
units, using off-the-shelf digital CMOS technology and tools, is quite feasible and very
promising, and certainly warrants further research exploration.

Keywords: neuromorphic computing, neocortical columns, spiking temporal neural
networks, online continual learning, intelligent sensory processing

1. Introduction

The field of deep learning (DL) has seen extraordinary progress over the last
decade and has established itself as the de facto standard technology for sensory
processing tasks such as visual object recognition/detection, audio/time-series signal
processing, natural language processing, etc. However, this progress has thrived with
heavy dependence on increasing hardware resources, and power and energy

1

consumption. These hardware resources such as CPUs, GPUs and specialized acceler-
ators primarily employ Turing computation model and von-Neumann computer
architecture. Such computation model and architecture were originally developed for
numerical and symbolic processing tasks that were difficult for humans. In contrast,
human neocortex is highly efficient in sensory processing and pattern recognition and
capable of online continual learning. Current deep learning is attempting to replicate
human-like sensory processing capability using conventional Turing-von Neumann
computing machines.

It has been observed by Hans Moravec and others that these two computation
models and systems are quite different and distinct; this observation is known as the
“Moravec’s Paradox” [1–3]. The current overarching grand challenge is: Can we design
much more energy-efficient computing hardware systems for human-like sensory
processing with continuous learning capability by mimicking the architecture, orga-
nization, and operation of the human neocortex? This grand challenge is not new and
has been around for decades. In 1990, Carver Mead first coined the term
“neuromorphic computing” [4] for this grand challenge. But the same notion and
aspiration can be traced back to Frank Rosenblatt’s “perceptrons” from the late 1950’s
[5]. This chapter describes our particular approach and strategy in pursuing this grand
challenge as part of the current resurgence of interest in neuromorphic computing [6].

Our research builds on the seminal works by James E. Smith on temporal neural
networks (TNNs) [7, 8] and is strongly influenced by Jeff Hawkins’ recent book “A
Thousand Brains: A New Theory of Intelligence” [9]. Unlike convolutional neural
networks (CNNs), TNNs are temporal spiking neural networks that embrace a strong
adherence to biological plausibility [10]. TNNs encode and process information in
temporal form mimicking the brain’s neocortical sensory signal processing. We devel-
oped a microarchitecture model for implementing highly efficient TNN designs
[11, 12] and demonstrated state-of-the-art clustering performance on a wide variety of
time-series signals [13].

Hawkins’ new theory on intelligence [9], informed by extensive neuroscience
research, suggests Cortical Columns (CCs) as the key compute units within the human
neocortex. The neocortex gains its intelligence through CC’s ability to model sensory
information in structured Reference Frames (RFs), and continuously update its models
as the sensor interacts with the environment. Each CC is computationally powerful and
can learn any specific task. There is great synergy between CCs and TNNs.

Our current research focuses on extending the TNN design and implementation
framework to incorporate CC attributes. Unlike artificial neural networks that sepa-
rate training and inference, CCs store and process information in RFs, support online
continuous learning, and can dynamically adapt to sensory input changes. Sensory
processing units built based on such CCs, can be truly “intelligent” as per Hawkins’
definition, and can enable contextualization and personalization of applications and
services for supporting edge AI on diverse mobile and wearable devices.

This chapter presents a framework for designing and implementing Cortical Col-
umns Computing Systems (C3S). This framework consists of three major components:
(1) a microarchitecture model for designing and implementing cortical columns and
CC-based computing systems using off-the-shelf digital CMOS technology; (2) a suite
of specialized functional building blocks to implement application-specific CC-based
processing units with significant improvements on Power-Performance-Area (PPA)
efficiency; and (3) a PyTorch-based software simulator tool for rapid design space
exploration targeting specific applications; and a design synthesis tool for direct
CMOS implementation of special-purpose C3S sensory processing units in the form of

2

Neuromorphic Computing

chiplets, potentially supporting the latest Universal Chiplet Interconnect Express
(UCIe) [14] standard. This chapter presents the progress we have made on C3S and
our future research directions.

2. Background and motivation

2.1 Unsustainable trend for DL compute

Deep neural networks (DNNs) [15–18] have advanced state-of-the-art in a
plethora of applications, particularly those mimicking human sensory processing tasks
such as image recognition, object detection, time-series signal (e.g., speech)
processing etc. However, due to exponentially growing models performing high-
dimensional tensor processing and global gradient backpropagation, their compute
requirements are scaling unsustainably. Specifically, a study by OpenAI in 2018 [19]
illustrated that DNN training compute is doubling every 3.4 months. Comparing this
with hardware driven by Moore’s Law doubling every 24 months, the gap between
compute demands and hardware supply is increasing at an exponential rate of 8x per
year or 500x every 3 years (see Figure 1). There is also growing evidence that the
current trajectory of deep learning compute scaling is economically, technologically
and environmentally unsustainable [20–22]. On a more optimistic note, some other
recent studies have claimed that the rate of DNN model explosion has slowed down
between 2018 and 2020 [23, 24], and that the trend is expected to plateau and shrink
in the future [25].

There are significant ongoing efforts to deal with this DNN compute complexity
explosion. Reducing data value precision through quantization and DNN model sizes

Figure 1.
Figure taken from [19] with annotations added. There is a significant trending gap between DNN computation
demand and hardware resource supply provided by Moore’s law. This demand-supply gap is increasing at the rate
of 8x/year. Thus, to sustain this trend, every year the amount of hardware resources would need to increase by 8�
or the training time will need to increase by 8�. A promising candidate solution is to revisit and develop computing
paradigms based on the brain’s neocortex, which is an existence proof for a highly efficient computing machine for
intelligent sensory processing.

3

Cortical Columns Computing Systems: Microarchitecture Model, Functional Building Blocks…
DOI: http://dx.doi.org/10.5772/intechopen.110252

through pruning can help mitigate the computation complexity [26–31]. More effi-
cient ways of using the computation hardware infrastructure, including static or
dynamic exploitation of value sparsity to avoid unnecessary computation, are also
being developed [32–38]. These are all valuable efforts to mitigate the complexity
explosion and to help sustain the continuation of the current productive trends.
However, there is also the need to concurrently explore other potentially promising
alternative paradigms and approaches.

2.2 Right time to revisit neuromorphic computing

All current commercial accelerators for Artificial Intelligence (AI) computation
employ the same computing paradigm that emerged more than 70 years ago based on
the Turing computation model and the von Neumann stored-program computer
architecture. However, these systems were not originally developed for targeting
human-type sensory processing workloads that constitute majority of modern AI
compute. This underscores the potential need to explore a much more complexity-
and energy-efficient computing model and architecture for AI computing. One
approach is to revisit biology and examine how to mimic not just the functional
behaviors, but also the structural organization of biological neural networks. Such an
approach can potentially enable real intelligent computing with significantly less
computation complexity and much better energy efficiency. One of the last major
efforts taking such “neuromorphic computing” approach was by Carver Mead and his
PhD students at CalTech back in the late 1980’s utilizing analog VLSI circuits to model
neural computation [4, 39, 40]. Both experimental neuroscience research and silicon
fabrication technology have made tremendous advancements in the past 40 years,
making this a good time to revisit the neuromorphic computing approach [6].

In recent years, several neuromorphic chips have been introduced both from
academia and industry, including analog [41], digital [42–48] and mixed-signal [49]
implementations. A dominant trend across these approaches is to implement a large
number of spiking neurons communicating with each other via event-driven packets
that encapsulate spiking information. Such spike-based event-driven computations
have been shown to be more energy-efficient than traditional compute. However,
they still lack the structural hierarchy and functional abstraction in the form of
cortical columns as seen in the neocortex. Digital CMOS implementation of cortical
columns and spiking neurons are both discussed as part of our research strategy in the
next section.

3. Research approach and strategy

Our research builds on the foundational works of Jeff Hawkins and James E. Smith
on reverse-engineering the neocortex from both a neuroscience theorist’s perspective
and a computer architect’s perspective, respectively. These two independent perspec-
tives are uncannily synergistic, and we fully embrace and integrate both of these
perspectives in formulating our research approach.

3.1 Hawkins’ new theory of neocortical computation

In 2021, Jeff Hawkins published a fascinating book entitled “A Thousand Brains: A
New Theory of Intelligence” [9]. In this book, accompanied by additional publications

4

Neuromorphic Computing

from others at Numenta [50–53], Hawkins proposes a new theory of neocortical
computation informed by extensive neuroscience research. Hawkins suggests Cortical
Columns (CCs) as the key compute units within the human neocortex, which contains
about 150,000 of such CCs (see Figure 2). The neocortex gains its intelligence
through CC’s ability to model sensory information in structured Reference Frames
(RFs) and continuously update its models as the sensor interacts with the environ-
ment.

Each CC is computationally powerful and capable of modeling complete objects.
As illustrated in Figure 2, complete models of an object exist in multiple CCs across
different sensory modalities (e.g., vision, hearing, touch) and across different hierar-
chy layers at different scales. Multiple CCs, across sensory modalities and layer hier-
archies, can communicate and reach consensus via a voting process. This is in contrast
to the traditional strict hierarchical view, involving increasing complexity and sophis-
tication with ascending hierarchical layers. Hawkins suggests the increasing level of
intelligence demonstrated by higher-functioning mammals is mainly due to the
increase in the total number of CCs and not necessarily due to increased complexity or
sophistication of the CCs. Furthermore, in contrast to current DNNs that separate
training and inference, CCs that store and process information in RFs can support
online, concurrent, and continuous learning and can dynamically adapt to sensory
input changes.

Recent discussions in the DL community seem to align with the basic ideas of
Hawkins’ theory. Continually learning structured models of the world via interactions
with the environment can help overcome the brittleness and catastrophic forgetting
associated with DNNs [54]. With the ability to continually learn and adapt to new

Figure 2.
Figure taken from [51, 53]. Left: Traditional hierarchical view where complexity of features recognized increases
up the hierarchy with complete objects detected only at the top. Right: Hawkins’ view where neocortex contains
about 150 K cortical columns (CCs) and multiple CCs across different sensory modalities and different hierarchy
layers can all learn complete models of objects and can communicate to reach a consensus on the output. For
example, a coffee cup can be quickly recognized through touch and vision, wherein two sets of CCs with modality-
specific models of the coffee cup at different scales all vote together to determine the object.

5

Cortical Columns Computing Systems: Microarchitecture Model, Functional Building Blocks…
DOI: http://dx.doi.org/10.5772/intechopen.110252

inputs from the environment, the need to achieve near-perfect accuracy through
extensive offline training process can be alleviated. This can potentially reduce the
offline training cost and complexity.

3.2 Smith’s biologically plausible neural networks

We leverage and build on another significant body of work by James E. Smith on
reverse-architecting the brain with the goal of replicating it using off-the-shelf digital
CMOS silicon [7, 8, 10, 55]. He proposes a new category of spiking neural networks
called temporal neural networks (TNNs) [7] that are architected to mimic the key
attributes of biological neocortex (see Figure 3). Unlike DNNs performing real-valued
tensor-based computations supported by global back propagation for stochastic gra-
dient descent, TNNs employ spiking neurons that encode and process inputs as tim-
ings of events or spikes, and can learn using local biologically plausible algorithm
called spike timing dependent plasticity (STDP). TNNs also differ from most other
spiking neural networks (SNNs) that encode values based on the rate of spikes as
opposed to spike timing. Figure 3 shows this taxonomy. Consequently TNNs, unlike
most other ANNs, are more truly “neuromorphic” due to their strong adherence to
biological plausibility.

Smith has also developed a TNN-based architecture for the cortical columns
and demonstrated the capability for doing unsupervised learning with rapid conver-
gence, and the capability to do online, concurrent, and continuous learning [10, 55].
Formulating the underlying mathematical basis for implementing TNNs, Smith has
proposed a new algebra called space-time (temporal) algebra [8]. Based on this new
temporal algebra (instead of Boolean algebra), temporal functions can be
implemented very efficiently in hardware by re-purposing the current digital logic
gates to make use of time as a “free” resource for both encoding and processing of
information.

Figure 3.
Neural network taxonomy contrasting neocortex-inspired temporal neural networks (TNNs) with other artificial
neural networks (ANNs). In contrast to other ANNs including deep neural networks (DNNs),TNNs incorporate
attributes with strong adherence to biological plausibility, including spiking neuron model, temporal coding of
inputs, and local simple spike timing dependent plasticity (STDP) learning rules.

6

Neuromorphic Computing

3.3 Cortical columns computing systems

Our research builds on these two bodies of prior works to explore the potential of
creating brain-inspired and brain-like computing fabric, which we call Cortical Col-
umns Computing Systems (C3S). Figure 4 compares our C3S approach against conven-
tional computers and biological neocortex. Our goal is to leverage the best attributes of
the other two paradigms to create a new computing paradigm. Figure 4 shows the
linkage of comparable levels of abstractions across these three distinct computing
system paradigms. Our research spans all four levels of abstractions including sensory
processing applications, a processor-level microarchitecture model, RTL-level func-
tional units, and gate-level building blocks. In order to target and impact mass
market computing, our research must be able to leverage current digital CMOS
technology and design tools. One of our goals is to develop an end-to-end
framework for designing and implementing Cortical Columns Computing Systems
(C3S). This will require the development of novel design exploration and design
synthesis tools. Our target applications include diverse sensory signal processing
units capable of energy-efficient and edge-native AI inference and online continuous
learning.

As illustrated in Figure 5, this framework consists of three key components: (1) a
microarchitecture model that can facilitate RTL implementation of Cortical Columns
(CCs) and Reference Frames (RFs) employed in C3S designs; (2) a suite of highly
optimized functional units and building blocks implemented in System Verilog to
support efficient application-specific implementations of C3S designs; and (3) a soft-
ware tool suite consisting of a PyTorch simulator for rapid design space exploration of
C3S designs and a design synthesis flow for mapping PyTorch functional models to
corresponding C3S hardware. Specific applications of current interest include visual
object recognition, anomaly detection on time-series signals (e.g., ECG), edge-native
always-on keyword spotting, and multi-modal human activity recognition (HAR)
[56].

Figure 4.
Comparison of cortical columns computing systems (C3S) against conventional computers and biological
computing systems in terms of levels of computing abstraction. Our research strategy is highlighted in the red box
and spans the four abstraction layers: Applications and system architecture, processor-level microarchitecture,
RTL-level functional units, and gate-level building blocks.

7

Cortical Columns Computing Systems: Microarchitecture Model, Functional Building Blocks…
DOI: http://dx.doi.org/10.5772/intechopen.110252

4. C3S microarchitecture model

4.1 Mini-columns and TNNs (completed work)

We have developed a microarchitecture model for building highly efficient
TNN designs [11]. In this model, values are encoded as timings of events or
spikes. Spikes are implemented as logic pulses whose timings are calibrated using unit
hardware clock. We refer to this as “direct” implementation as hardware clock itself
defines the time unit for temporal processing and spikes directly arrive at precisely
timed clock cycles. Here, spike timings are not encoded as binary values propagated in
the form of packets. The proposed TNN microarchitecture model consists of the
following key modules: (1) a counter-based synapse that performs temporal
processing of input spikes to generate specialized responses and unsupervised/
supervised STDP learning of synaptic weight; (2) a multi-synapse neuron that accu-
mulates the synaptic responses and fires an output spike when the accumulated
response crosses a threshold; and (3) a multi-neuron TNN column (referred hence-
forth as “mini-column” to distinguish from cortical column) that applies winner-take-
all (WTA) inhibition across its neurons. Figure 6 illustrates the implementation of a
mini-column.

A mini-column with p synaptic inputs feeding q neurons via a pxq synaptic
crossbar is referred to as a (pxq) mini-column in Figure 6. The figure illustrates the
actual implementation of the major components of a (pxq) mini-column, including
the synapses, neuron body, STDP local learning, and WTA lateral inhibition. In
our prior work [11], we have taken the RTL designs of various configurations of the
mini-column through both the synthesis and physical design tools, and obtained PPA
(power, performance, area) results by scaling both p and q. We observed that power
and area scale linearly with the total number of synapses (pxq), whereas performance
limited by the critical path delay scales logarithmically with the number of synaptic
inputs (p). We also derived a set of characteristic equations from the gate-level
designs that provide qualitative estimation of gate-level PPA complexity for arbitrary
mini-column designs.

Figure 5.
Proposed framework for implementing C3S designs consists of three key components: Microarchitecture model [11],
functional building blocks [12] and design exploration tools. Some applications of interest are visual object
recognition, anomaly detection [13], keyword spotting, and human activity recognition [56]. These framework
components currently support TNN design and implementation and key relevant publications are cited here. Our
ongoing research aims to extend this framework to support more general C3S designs.

8

Neuromorphic Computing

Multiple mini-columns can be grouped and organized into a hierarchy of layers
to form multi-layer temporal neural networks (TNNs), as shown at the bottom
of Figure 6. Multiple multi-neuron mini-columns are stacked to form a single
layer and multiple multi-column layers are cascaded to form a multi-layer TNN.
A TNN is typically bookended by input-encode and output-decode layers, and
is effectively a feed-forward network. The mini-column is the fundamental
building block for TNNs and can learn to distinguish distinct input patterns. Hence,
a single mini-column can be viewed as a fully functioning TNN. Table 1 in Section
6 demonstrates the efficacy of single mini-column designs in performing
unsupervised clustering with minimal PPA complexity.

Figure 6.
Microarchitecture model for implementing multi-column and multi-layer TNNs [11]. This figure
highlights details of a generic TNN column (or mini-column). Each mini-column consists of p inputs
feeding a stack of q neurons via a pxq synaptic crossbar. Each cross point in the pxq crossbar stores a weight value
that is updated based on spike timing dependent plasticity (STDP) updating rules. Each neuron performs the
weighted sum of its inputs. Each mini-column is also supported by winner-take-all (WTA) inhibition across its
neuron outputs that selects the winner neuron. Gate-level implementations of these mini-column components are
illustrated.

9

Cortical Columns Computing Systems: Microarchitecture Model, Functional Building Blocks…
DOI: http://dx.doi.org/10.5772/intechopen.110252

4.2 Cortical columns with RFs (ongoing work)

The current phase of our research aims to leverage the high synergy between
cortical columns and TNN mini-columns. We plan to extend the TNN microarch-
itecture model to incorporate CCs consisting of RFs, making it generic enough to
accomplish integration across diverse sensory modalities (see Figure 7).

In contrast to TNNs that employ feed-forward processing, CCs store structured
information about inputs in Ref. Frames (RFs), and process and update the stored
information through feedback connections. This continuous feedback loop of predict-
sense-update effectively introduces an additional dimension of “memory” that
remembers past observations and patterns. This “sequential” behavior is missing in
feed-forward TNNs. Hence, TNN mini-columns combined with feedback mechanism
implementing the predict-sense-update loop can be used to build cortical columns. As
shown in Figure 7, multiple CCs targeting different sensory modalities can interact
with each other and seek consensus on the output via voting within and across sensory
modalities. Each CC, irrespective of its sensory modality, broadly implements two
components: 1) a Reference Frame that maintains a “map” of the sensory information,
and 2) an Agent that achieves goal-oriented behavior based on information from the
Reference Frame and the input signals. Agent comprises of two TNN-type mini-
columns performing unsupervised clustering and supervised classification. Reference
Frame involves three functionalities which can be mapped to three types of mini-
columns: Where Column, What Column and Output Column. In the context of visual
object recognition, the three types of mini-columns together create models of objects
by tracking locations of features on the object. The Output Column is envisioned to be
very similar to the TNN mini-column discussed previously and determines the object
identity. The Where and What Columns take the outputs from the Output Column as
feedback information. The Where Column generates location of sensor on the object
based on this feedback and the latest movement information from the agent. The
What Column predicts object features based on the result from theWhere Column and
updates its model based on the actual sensory input and the feedback from the Output
Column. In order to apply this model to other time-series applications, a key

UCR Mini-column

Design (pxq)

UCR Benchmark Name Synapse

Count

Power

(μW)

Comp. Time

(ns)

Area

(mm2)

65x2 SonyAIBORobotSurface2 130 0.78 13.86 0.001

96x2 ECG200 192 1.12 14.49 0.001

152x2 Wafer 304 1.76 15.96 0.002

343x2 ToeSegmentation2 686 3.95 17.32 0.005

637x2 Lightning2 1274 7.33 18.75 0.011

470x5 Beef 2350 14.62 22.08 0.018

270x25 WordSynonyms 6750 39.00 17.51 0.054

All mini-columns are specifically trained for their corresponding benchmarks and achieve competitive performance
relative to state-of-the-art. Even the largest mini-column design only consumes 39 μ W.

Table 1.
Design space exploration for UCR time-series clustering: Using TNN7 macros, PPA [12] for seven sample TNN
prototype designs (mini-columns) across diverse synapse counts and application benchmarks from [13].

10

Neuromorphic Computing

component that needs to be investigated is pre-processing of the diverse sensory
signals to extract abstract “location-feature” pairs from raw sensory signals. Develop-
ing a detailed parameterized design template of a generic Cortical Column (CC)
containing the five mini-column types is largely ongoing research.

5. C3S functional building blocks

5.1 Custom macro cells for mini-column designs (completed work)

From the TNN microarchitecture model, we identified the key fundamental
building blocks and implemented them as a suite of custom standard cell macros in
7 nm CMOS, called TNN7 [12]. Using these custom macros, we can further optimize
the TNN designs and enhance their scalability. These building blocks and the

Figure 7.
Cortical columns computing system (C3S) architecture consisting of multiple CCs targeting multiple sensory
modalities interacting with each other to form a consensus on the output via voting. Each CC broadly consists of five
TNN-style mini-columns: Where, What and Output mini-columns that together implement the Reference Frame
(RF), and unsupervised and supervised mini-columns comprising the agent. For visual object recognition, the
respective functionalities of the three RF mini-columns are: derive locations of sensor on the object, map features to
locations, and derive the object ID based on the feature map. In contrast to feedforward TNNs, each CC learns
through feedback from output and possesses a form of “memory” in the learning process.

11

Cortical Columns Computing Systems: Microarchitecture Model, Functional Building Blocks…
DOI: http://dx.doi.org/10.5772/intechopen.110252

corresponding proposed nine macros are detailed in Figure 8. Two macros are
implemented for synaptic temporal processing, three for synaptic STDP learning, one
for WTA inhibition, and three for general-purpose utility functions such as spike
encoding. These macros have been optimized such that they incur minimal numbers
of gates and transistors to achieve their corresponding functionalities. After
implementing the custom macro-based TNN designs in SystemVerilog, we
observed significant improvements in all PPA metrics. Specifically, we achieved 14,
16, 28, and 45% improvements in power, performance, area, and energy-delay
product (EDP) respectively, relative to our original designs that simply use off-the-
shelf standard cells. Post-layout designs are also considerably simplified using
TNN7 (see Figures 9a and b). Further, instantiating the TNN7 macros during
logic synthesis reduces the netlist generation runtime considerably (by more than
3x typically).

Figure 8.
Functional building blocks of a mini-column (q neurons with p synapses each) and associated proposed TNN7
macros (highlighted in yellow) [12]. Two macros are developed for synaptic feedforward processing, three for
synaptic STDP learning, one for WTA inhibition and three for generic utility functions such as spike encoding.

Figure 9.
Layout comparison for a sample mini-column [12]: Original design using off-the-shelf standard cell library vs.
custom design using enhanced cell library with TNN7 macros. TNN7 design incurs much lesser wiring and logic
complexity, and delivers 14, 16, 28, and 45% improvements in power, performance, area, and energy-delay
product respectively. Note: TNN7 macros are developed using standard toolchain and design flow.

12

Neuromorphic Computing

5.2 Custom macro cells for C3S designs (ongoing work)

In our follow-on work, we plan to examine decomposition of the extended C3S
microarchitecture model into its fundamental building blocks, and implement them as
custom macro cells. These new macro cells can be added to our earlier TNN7 library to
create a new extended library with custom macros for supporting C3S designs. We
envision distinct specialized macros for “storage”, “predict”, “update” and “voting”
functionalities that are generic enough to build Where, What and Output mini-
columns at arbitrary scales and modalities. A key goal here is to have a rich set of
macros that support diverse sensory modalities to enable implementation of poten-
tially new types of mini-columns in the future. Currently, content-addressable mem-
ories (CAMs) seem to be a promising candidate as building blocks for implementing
mini-columns for Reference Frames. In order to effectively predict relevant informa-
tion based on stored knowledge in RFs, we believe these CAMs would need to support
fuzzy matching; not strict exact matching as done conventionally. Implementing
fuzziness in an RF can help recover similar features that can aid rapid learning of new
patterns and features. This is largely ongoing and future work.

6. C3S design tools

6.1 TNN simulation tool and example applications (completed work)

Along with the hardware framework consisting of microarchitecture model and
TNN7 custom macros, we also developed a software tool, called TNNSim, that follows
the above TNN microarchitecture model and allows rapid application-specific design
exploration (see Figure 10). This tool is based on PyTorch [57], which is a popular
deep learning framework widely used in academia. Using PyTorch enables easy inte-
gration of standard DL benchmarks and fast parallel processing using its native com-
putational libraries. The TNNSim toolflow and its major libraries of functions are
illustrated in Figure 10. Combining design exploration on TNNSim with TNN7
implementation, we demonstrate TNN designs for the following two classes of appli-
cations. Tables 1 and 2 summarize ten TNN design points for these applications.

Figure 10.
TNNSim flow consisting of libraries implementing the four major functionalities: Preprocessing, encoding,
inference and continual learning. Each functionality is implemented as a separate class and can be instantiated in
a modular fashion to design arbitrary TNNs. TNNSim has enabled online learning demonstration and application
performance exploration in our prior works [11–13].

13

Cortical Columns Computing Systems: Microarchitecture Model, Functional Building Blocks…
DOI: http://dx.doi.org/10.5772/intechopen.110252

6.1.1 UCR time-series clustering benchmark suite

Using TNNSim, we designed 36 single-(mini) column TNNs of various sizes to
perform unsupervised clustering on 36 UCR time-series datasets [58]. These single-
column TNNs can achieve state-of-the-art performance surpassing most of the con-
temporary comparable algorithms [13]. Table 1 provides synapse count and PPA for 7
of the 36 benchmark-specific designs to demonstrate the efficacy of single mini-
column designs across various configurations and various benchmark applications.
The seven benchmarks and their input signal types are briefly described: (1)
SonyAIBORobotSurface2 - accelerometer signals to detect two types of walking sur-
faces; (2) ECG200 - ECG signals to detect normal heartbeat vs. myocardial infarction;
(3) Wafer - fabrication process control sensor signals to detect normal vs. abnormal
silicon wafers; (4) ToeSegmentation2 - motion sensors to detect normal vs. abnormal
walking; (5) Lightning2 - power-density series derived from optical and RF sensor
spectogram to detect lightning; (6) Beef - food spectograph to detect varying levels of
adulteration; and (7) WordSynonyms - 1D series from word outlines to detect 25
different words.

The smallest mini-column (130 synapses) for SonyAIBORobotSurface2 and the
largest mini-column (6750 synapses) for WordSynonyms perform very efficient
unsupervised clustering within only 1 μW and 40 μW power, respectively [12]. PPA
metrics scale with synapse count as expected. Note that mini-column for Beef has the
highest input synapse count p and therefore incurs the largest computation time, as
delay depends on p. These benchmarks demonstrate even relatively small single mini-
column designs can perform practically useful clustering with minimal hardware
complexity and power consumption.

6.1.2 MNIST handwritten digit recognition benchmark

Here, we demonstrate much larger multi-column multi-layer TNN designs with
each layer composed of multiple TNN mini-columns, trained to recognize 10 classes
of handwritten digits from 0 through 9 [59]. Three multi-layer TNNs are presented
here. They include 2-layer, 3-layer and 4-layer designs containing 389 K, 1.3 M and
3 M total synaptic counts respectively, as shown in Table 2. With increasing number
of layers, these three TNNs can achieve 93, 97 and 99% accuracy on the MNIST
dataset, while consuming only about 2, 8 and 18 mW of power, respectively [12]. This
demonstrates the huge energy-efficiency potential of TNNs. Using TNNSim, we also
illustrate online incremental learning capability wherein a TNN design learns a new

MNIST TNN Design Error Rate Synapse Count Power (mW) Comp. Time (ns) Area (mm2)

2-Layer 7% 389 K 2.25 41.38 3.09

3-Layer 3% 1310 K 7.57 66.16 10.42

4-Layer 1% 3096 K 17.89 91.58 24.63

2-layer, 3-layer and 4-layer TNN designs achieve progressively decreasing error rates (7%, 3% and 1%) while consuming
increasing power. The 4-layer design incurs just 18 mW power in delivering state-of-the-art accuracy of 99%. Note the
synapse counts of these multi-column multi-layer TNN designs are significantly higher than that of the single mini-column
TNN designs in Table 1.

Table 2.
Design space exploration for MNIST: Using TNN7 macros, PPA for three multi-layer TNN prototype designs
from [10].

14

Neuromorphic Computing

previously unseen pattern using unsupervised STDP. Figure 11 shows the converged
weights of a single mini-column that is first trained using only digits 0–8 (iteration 0).
When introducing the previously unseen digit ‘9’, within around 500 new examples
(iteration 500) that contain about 50 examples of ‘9’, it learns the new digit ‘9’
without forgetting previously learned digits in an unsupervised fashion [11]. This
demonstrates the ability for this mini-column to perform online continual learning.

6.2 Proposed C3S simulation & synthesis tools (ongoing work)

Building on the previously described three components, the overarching goal of
our current research is to develop an end-to-end framework that can automatically
translate application-specific C3S models in software to highly customized hardware
designs. It can be utilized as an architecture and design synthesis framework for
implementing C3S processing units. We envision this as a complete design
framework spanning applications, architecture, microarchitecture, and custom macro
suite, to generate application-specific C3S processing units for diverse sensory
processing applications. As shown in Figure 12, the framework consists of two main
components.

C3S-Sim (Application and Architectural Design Exploration): This is the software
simulator framework, consisting of (1) a PyTorch simulator (extended from TNNSim
to incorporate C3S functional modeling), and (2) a cycle-accurate architectural simu-
lator in C++ to mimic hardware and derive accurate latency performance information
for C3S designs.

C3S-Syn (Micro-architectural Design and Implementation): This is the hardware
implementation framework that takes in the PyTorch C3S functional models and
generates C3S hardware designs. It is envisioned to include (1) PyVerilog conversion
for automated RTL generation from PyTorch, (2) automated RTL-to-GDSII flow that
leverages C3S-specialized custom macro cells and generates application-specific post-
layout netlist and PPA results for a specific C3S design.

Figure 11.
Online incremental learning: A single TNN mini-column trained only on the digits 0–8 learns a new previously
unseen digit ‘9’ within 500 samples (that consist about 50 samples of digit ‘9’) in an unsupervised manner [11].
This demonstrates the online learning capability of TNNs, which can quickly learn new classes from relatively few
examples without forgetting previously learned information.

15

Cortical Columns Computing Systems: Microarchitecture Model, Functional Building Blocks…
DOI: http://dx.doi.org/10.5772/intechopen.110252

6.3 Targeted applications for C3S designs (future work)

Our targeted applications for C3S designs are influenced by the emergence of
several dominant industry trends: (1) Increasing AI Compute Demand: The computa-
tion required for supporting Deep Learning (DL) is increasing exponentially at the
staggering rate of doubling every 3.4 months [19]. Many believe that this trend is not
technologically nor economically sustainable [20–22]. (2) Migration Towards Edge AI:
There is strong efficiency, security, and privacy motivations for migrating AI compu-
tation from the centralized cloud infrastructure to distributed personal edge devices.
(3) Emerging Ubiquity of Wearables: Mobile devices, e.g. smartphones, have replaced
PCs as the technology, innovation, and profitability driver for mass market comput-
ing, due to their more stringent form factor and energy efficiency requirements. As
wearable devices become more ubiquitous, we believe they will in turn become the
new technology and innovation driver for mass market computing [60]. (4) Interests

Figure 12.
Envisioned end-to-end cortical columns computing system (C3S) design framework consisting of C3S-Sim for
application exploration and C3S-Syn for microarchitectural implementation. C3S-Sim consists of a PyTorch tool
(extension of TNNSim) to design application-specific C3S functional models and a cycle-accurate architectural
simulator for hardware performance estimation. C3S-Syn incorporates the extended microarchitecture model and
functional building blocks for C3S implementation, with an automated design flow to translate PyTorch
functional models to application-specific hardware designs.

16

Neuromorphic Computing

in Neuromorphic Chips: Orders of magnitude improvement on energy efficiency is
necessary to support autonomous intelligent wearable devices. We believe to achieve
such level of improvement will require adopting the neuromorphic approach in cre-
ating new computing devices that mimic the organization and operation of biological
neural networks of the neocortex.

Hence, our C3S research focuses on targeting the design and implementation of
Neuromorphic Intelligent Sensory Processing (NISP) Chiplets with truly brain-like sen-
sory processing capability as well as brain-like energy efficiency. This new genre of
C3S based sensory processing units exhibit the following attributes: (1)
Neuromorphic: based on reverse architecting the neocortex; (2) Intelligent: capable
of edge-native autonomous and continuous online learning; (3) Sensory Processing:
support near-sensor on-device processing of diverse modalities of sensory signals; (4)
Chiplets: target chiplet implementations (potentially UCIe-compliant [14]) in stan-
dard digital CMOS, for ease of integration into diverse edge AI platforms on mobile,
wearable, and IoT devices.

7. Summary and conclusion

Figure 13 summarizes our overall research vision and provides a broader context
for our work. Current deep learning approach adopts the path on the left, employing
high dimensional tensor processing and hardware accelerators with massive array of
MAC units. Our approach takes the path on the right, leveraging spike timing
processing and hardware fabric inspired by cortical columns. Our initial focus was on
feed-forward mini-columns based on TNN principles. Our current focus broadens to

Figure 13.
Summary of envisioned research in a broader context. Left path corresponds to the current deep learning approach
that mainly employs numeric tensor processing deployed on hardware accelerators consisting of large MAC arrays.
Right path illustrates our research approach that employs spike timing processing in the design and implementation
of special-purpose processing units inspired by cortical columns, or Neuromorphic Intelligent Sensory Processing
(NISP) units. Interesting cross-over ideas between both paths should be explored.

17

Cortical Columns Computing Systems: Microarchitecture Model, Functional Building Blocks…
DOI: http://dx.doi.org/10.5772/intechopen.110252

all cortical columns with feedback in the form of reference frames. We are developing
a framework and software tool suite for designing and implementing application-
specific, highly energy-efficient sensory processing units, or Neuromorphic Intelli-
gent Sensory Processing (NISP) units, with continuous online on-device learning
capability. Our goal is to achieve potentially up to three orders of magnitude
improvements on power and energy efficiency, relative to current deep learning
accelerators. We also anticipate there could be interesting cross-over ideas between
the current deep learning path and our new C3S path that should be explored.

This chapter presents a neuromorphic computer architecture and design approach
that focuses on implementing neocortical computing fabric using digital off-the-shelf
CMOS technology. This work builds on the foundational works of Jeff Hawkins’ “A
Thousand Brains Theory” and James E. Smith’s biologically plausible neural networks.
This research effort in NCAL at CMU aims to build Cortical Columns Computing
Systems (C3S) that exhibit brain-like capabilities and brain-like efficiency. We hope
our work serves as one step towards the holy grail of building a silicon neocortex. We
hope to generate broad interest through this chapter that can lead to a vibrant research
community pursuing this line of research. We believe there are tremendous opportu-
nities for novel innovations that can have significant industry impact.

Acknowledgements

Our research effort has been inspired and guided by the foundational work of
James E. Smith (Emeritus Professor, University of Wisconsin, and Adjunct Professor,
Carnegie Mellon University). We are indebted to Jim’s work and guidance. Two other
PhD students in NCAL (Neuromorphic Computer Architecture Lab), Shreyas
Chaudhari and Prabhu Vellaisamy, along with many MS students in CMU’s 18-743
“Neuromorphic Computer Architecture and Processor Design” course, have made and are
still making significant contributions to this research effort.

Author details

John Paul Shen* and Harideep Nair
Carnegie Mellon University, Pittsburgh, USA

*Address all correspondence to: jpshen@cmu.edu

©2023TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

18

Neuromorphic Computing

References

[1]Moravec H. Mind Children: The
Future of Robot and Human Intelligence.
Cambridge, MA, USA: Harvard
University Press; 1988

[2]Minsky M. Society of Mind. New
York, NY, USA: Simon and Schuster;
1988

[3] Brooks RA. Intelligence without
representation. Artificial Intelligence.
1991;47(1–3):139-159

[4]Mead C. Neuromorphic electronic
systems. Proceedings of the IEEE. 1990;
78(10):1629-1636

[5] Rosenblatt F. The perceptron: A
probabilistic model for information
storage and organization in the
brain. Psychological Review. 1958;65(6):
386

[6] Schuman C, D, Potok TE, Patton RM,
Birdwell DJ, Dean ME, Rose GS, et al. A
survey of neuromorphic computing and
neural networks in hardware. arXiv
preprint arXiv:1705.06963. 2017

[7] Smith JE. Space-time computing with
temporal neural networks. Synthesis
Lectures on Computer Architecture.
2017;12(2):i-215

[8] Smith J. Space-time algebra: A model
for neocortical computation. In: 2018
ACM/IEEE 45th Annual International
Symposium on Computer Architecture
(ISCA). Los Angeles, CA, USA: IEEE;
2018. pp. 289-300

[9]Hawkins J. A Thousand Brains: A
New Theory of Intelligence. London,
United Kingdom: Hachette UK; 2021

[10] Smith JE. A temporal neural network
architecture for online learning. arXiv
preprint arXiv:2011.13844. 2020

[11]Nair H, Shen JP, Smith JE. A
microarchitecture implementation
framework for online learning with
temporal neural networks. In: 2021 IEEE
Computer Society Annual Symposium on
VLSI (ISVLSI). Tampa, FL, USA: IEEE;
2021. pp. 266-271

[12]Nair H, Vellaisamy P, Bhasuthkar S,
Shen JP. Tnn7: A custom macro suite for
implementing highly optimized designs of
neuromorphic tnns. In: 2022 IEEE
Computer Society Annual Symposium on
VLSI (ISVLSI). Pafos, Cyprus: IEEE; 2022.
pp. 152-157

[13] Chaudhari S, Nair H, Moura JMF,
Shen JP. Unsupervised clustering of time
series signals using neuromorphic
energy-efficient temporal neural
networks. In: ICASSP 2021–2021 IEEE
International Conference on Acoustics,
Speech and Signal Processing (ICASSP).
Toronto, Canada: IEEE; 2021.
pp. 7873-7877

[14] Sharma DD, Pasdast G, Qian Z,
Aygun K. Universal chiplet interconnect
express (ucie): An open industry
standard for innovations with chiplets at
package level. IEEE Transactions on
Components, Packaging and
Manufacturing Technology. 2022;12(9):
1423-1431

[15] LeCun Y, Bengio Y, Hinton G. Deep
learning. Nature. 2015;521(7553):
436-444

[16] Pouyanfar S, Sadiq S, Yan Y, Tian H,
Tao Y, Reyes MP, et al. A survey on deep
learning: Algorithms, techniques, and
applications. ACM Computing Surveys
(CSUR). 2018;51(5):1-36

[17] Alom MZ, Taha TM, Yakopcic C,
Westberg S, Sidike P, Nasrin MS, et al. A

19

Cortical Columns Computing Systems: Microarchitecture Model, Functional Building Blocks…
DOI: http://dx.doi.org/10.5772/intechopen.110252

state-of-the-art survey on deep learning
theory and architectures. Electronics.
2019;8(3):292

[18]Dong S, Wang P, Abbas K. A survey
on deep learning and its applications.
Computer Science Review. 2021;40:
100379

[19]OpenAI. Ai and compute. 2018.
Available from: https://openai.com/
blog/ai-and-compute/.

[20] Thompson NC, Greenewald K,
Lee K, Manso GF. The computational
limits of deep learning. arXiv preprint
arXiv:2007.05558. 2020

[21] Lohn A, Musser M. Ai and Compute:
How Much longer Can Computing
Power Drive Artificial Intelligence
Progress. Washington, D.C., USA:
Center for Security and Emerging
Technology (CSET); 2022

[22]Numenta Inc. Ai Is Harming our
Planet: Addressing ai’s Staggering Energy
Cost. CA, USA: Numenta Inc.; 2022

[23] Alex Lyzhov. “ai and compute” trend
isn’t predictive of what is happening (blog
post). 2021. Available from: https://www.a
lignmentforum.org.

[24] Sevilla J, Heim L, Ho A, Besiroglu T,
Hobbhahn M, Villalobos P. Compute
trends across three eras of machine
learning. arXiv preprint arXiv:
2202.05924. 2022

[25] Patterson D, Gonzalez J,
Hölzle U, Le Q, Liang C,
Munguia L-M, et al. The carbon
footprint of machine learning training
will plateau, then shrink. Computer.
2022;55(7):18-28

[26]Han S, Mao H, Dally WJ. Deep
compression: Compressing deep neural
networks with pruning, trained

quantization and huffman coding. arXiv
preprint arXiv:1510.00149. 2015

[27] Li F, Zhang B, Liu B. Ternary weight
networks. arXiv preprint arXiv:
1605.04711. 2016

[28]Hubara I, Courbariaux M, Soudry D,
El-Yaniv R, Bengio Y. Quantized neural
networks: Training neural networks with
low precision weights and activations.
The Journal of Machine Learning
Research. 2017;18(1):6869-6898

[29]He Y, Zhang X, Sun J. Channel
pruning for accelerating very deep
neural networks. In: Proceedings of the
IEEE International Conference on
Computer Vision. Venice, Italy: ICCV;
2017. pp. 1389-1397

[30]Wu H, Judd P, Zhang X, Isaev M,
Micikevicius P. Integer quantization for
deep learning inference: Principles and
empirical evaluation. arXiv preprint
arXiv:2004.09602. 2020

[31] Sun X, Wang N, Chen C-Y, Ni J,
Agrawal A, Cui X, et al. Vijayalakshmi
Viji Srinivasan, and Kailash
Gopalakrishnan. Ultra-low precision 4-
bit training of deep neural networks.
Advances in Neural Information
Processing Systems. 2020;33:1796-1807

[32]Wen W, Chunpeng W, Wang Y,
Chen Y, Li H. Learning structured
sparsity in deep neural networks.
Advances in Neural Information
Processing Systems. 2016;29:1-9

[33] Gale T, Elsen E, Hooker S. The state
of sparsity in deep neural networks.
arXiv preprint arXiv:1902.09574. 2019

[34]Hoefler T, Alistarh D, Ben-Nun T,
Dryden N, Peste A. Sparsity in deep
learning: Pruning and growth for
efficient inference and training in neural

20

Neuromorphic Computing

networks. Journal of Machine Learning
Research. 2021;22(241):1-124

[35] Zhang S, Zidong D, Zhang L, Lan H,
Liu S, Li L, et al. Cambricon-x: An
accelerator for sparse neural networks.
In: In 2016 49th Annual IEEE/ACM
International Symposium on
Microarchitecture (MICRO). Taipei,
Taiwan: IEEE; 2016. pp. 1-12

[36] Parashar A, Rhu M, Mukkara A,
Puglielli A, Venkatesan R, Khailany B,
et al. Scnn: An accelerator for
compressed-sparse convolutional
neural networks. ACM SIGARCH
computer architecture news. 2017;45(2):
27-40

[37] Gondimalla A, Chesnut N,
Thottethodi M, Vijaykumar TN. Sparten:
A sparse tensor accelerator for
convolutional neural networks. In:
Proceedings of the 52nd Annual IEEE/
ACM International Symposium on
Microarchitecture. 2019. pp. 151-165

[38] Yang D, Ghasemazar A, Ren X,
Golub M, Lemieux G, Lis M. Procrustes:
A dataflow and accelerator for sparse
deep neural network training. In: 2020
53rd Annual IEEE/ACM International
Symposium on Microarchitecture
(MICRO). IEEE; 2020. pp. 711-724

[39]Mead C, Ismail M. Analog VLSI
Implementation of Neural Systems. Vol.
80. New York, NY, USA: Springer,
Science & Business Media; 1989

[40]Douglas R, Mahowald M, Mead C.
Neuromorphic analogue vlsi. Annual
Review of Neuroscience. 1995;18:
255-281

[41] Schemmel J, Fieres J, Meier K.
Wafer-scale integration of analog neural
networks. In: 2008 IEEE International
Joint Conference on Neural Networks
(IEEE World Congress on

Computational Intelligence). Hong
Kong: IEEE; 2008. pp. 431-438

[42] Furber SB, Lester DR, Plana LA,
Garside JD, Painkras E, Temple S, et al.
Overview of the spinnaker system
architecture. IEEE Transactions on
Computers. 2012;62(12):2454-2467

[43] Frenkel C, Lefebvre M, Legat J-D,
Bol D. A 0.086-mm 2 12.7-pj/sop 64k-
synapse 256-neuron online-learning
digital spiking neuromorphic processor
in 28-nm cmos. IEEE Transactions on
Biomedical Circuits and Systems. 2018;
13(1):145-158

[44] Frenkel C, Legat J-D, Bol D.
Morphic: A 65-nm 738k-synapse/mm2

quad-core binary-weight digital
neuromorphic processor with stochastic
spike-driven online learning. IEEE
Transactions on Biomedical Circuits and
Systems. 2019;13(5):999-1010

[45] Stuijt J, Sifalakis M, Yousefzadeh A,
Corradi F. μ brain: An event-driven and
fully synthesizable architecture for
spiking neural networks. Frontiers in
Neuroscience. 2021;15:538

[46]Merolla PA, Arthur JV, Alvarez-
Icaza R, Cassidy AS, Sawada J,
Akopyan F, et al. A million
spiking-neuron integrated circuit with a
scalable communication network and
interface. Science. 2014;345(6197):
668-673

[47]Davies M, Srinivasa N, Lin T-H,
Chinya G, Cao Y, Choday SH, et al.
Loihi: A neuromorphic manycore
processor with on-chip learning. IEEE
Micro. 2018;38(1):82-99

[48] BrainChip Holdings Ltd. Akida
neuromorphic system-on-chip. Available
from: https://brainchip.com/akida-neura
l-processor-soc/.

21

Cortical Columns Computing Systems: Microarchitecture Model, Functional Building Blocks…
DOI: http://dx.doi.org/10.5772/intechopen.110252

[49] Benjamin BV, Gao P, McQuinn E,
Choudhary S, Chandrasekaran AR, Bussat
J-M, et al. Neurogrid: A mixed-analog-
digital multichip system for large-scale
neural simulations. Proceedings of the
IEEE. 2014;102(5):699-716

[50]Hawkins J, Ahmad S, Cui Y. A
theory of how columns in the neocortex
enable learning the structure of the
world. Frontiers in Neural Circuits. 2017;
11:81

[51]Hawkins J, Lewis M, Klukas M,
Purdy S, Ahmad S. A framework for
intelligence and cortical function based
on grid cells in the neocortex. Frontiers
in Neural Circuits. 2019;12:121

[52] Lewis M, Purdy S, Ahmad S,
Hawkins J. Locations in the neocortex: A
theory of sensorimotor object
recognition using cortical grid cells.
Frontiers in Neural Circuits. 2019;13:22

[53] Kjell Jørgen Hole and Subutai
Ahmad. A thousand brains: Toward
biologically constrained ai. SN Applied
Sciences. 2021;3(8):1-14

[54]Heaven D. Deep trouble for deep
learning. Nature. 2019;574(7777):
163-166

[55] Smith JE. A macrocolumn
architecture implemented with temporal
(spiking) neurons. arXiv preprint arXiv:
2207.05081. 2022

[56]Nair H, Tan C, Zeng M,
Mengshoel OJ, Shen JP. Attrinet:
Learning mid-level features for human
activity recognition with deep belief
networks. In: Adjunct Proceedings of the
2019 ACM International Joint
Conference on Pervasive and Ubiquitous
Computing and Proceedings of the 2019
ACM International Symposium on
Wearable Computers. 2019.
pp. 510-517

[57] Paszke A, Gross S, Massa F, Lerer A,
Bradbury J, Chanan G, et al. Pytorch: An
imperative style, high-performance deep
learning library. Advances in Neural
Information Processing Systems. 2019;
32:8026-8037

[58] Dau HA, Bagnall A, Kamgar K, Yeh
C-CM, Zhu Y, Gharghabi S, et al. The
ucr time series archive. IEEE/CAA
Journal of Automatica Sinica. 2019;6(6):
1293-1305

[59] Yann LeCun, Corinna Cortes,
Christopher Burges JC. The mnist
database of handwritten digits. Availalbe
from: http://yann.lecun.com/exdb/
mnist/.

[60] John Dian F, Vahidnia R, Rahmati A.
Wearables and the internet of things
(iot), applications, opportunities, and
challenges: A survey. IEEE Access. 2020;
8:69200-69211

22

Neuromorphic Computing

