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1 Introduction

The term “neuromorphic” refers to systems that are closely resembling the
architecture and/or the dynamics of biological neural networks [1, 2, 3].
Typical examples would be novel computer chips designed to mimic the ar-
chitecture of a biological brain, or sensors that get inspiration from, e.g.,
the visual or olfactory systems in insects and mammals to acquire inform-
ation about the environment. This approach is not without ambition as it
promises to enable engineered devices able to reproduce the level of per-
formance observed in biological organisms – the main immediate advantage
being the efficient use of scarce resources, which translates into low power
requirements. Nowadays, the neuromorphic approach is mostly investigated
at two levels (i) algorithmic and (ii) hardware. On the algorithmic level,
it leverages spike-based processing and training [2] to build novel machine
learning pipelines able to process data efficiently. At the hardware level, the
neuromorphic approach is pursued in designing novel analog and digital cir-
cuits and computer chips inspired by biological neural systems. This results
in novel sensing devices believed to produce particularly good candidates to
emulate biological vision, as well as in the design of computer chips ded-
icated to efficiently implement the spike-based systems just introduced. In
fact, due to the discontinuous nature of spike-based communication and the
temporal dynamics of spiking neurons, simulating the behaviour of a whole
network of spiking neurons on conventional computer hardware is compu-
tationally – and thus energy-wise – very inefficient. This has now also a
close relative in the field of artificial intelligence (AI) where Geoffrey Hinton
has recently introduced the concept of “Mortal Computation”[4]: a form of
computing where no separation between software and hardware exists. In
“Mortal Computation”, neural network solutions are uniquely tied to their

∗Advanced Concepts Team (ACT), European Space Research & Technology Centre
(ESTEC), Keplerlaan 1, 2200 AG Noordwijk (Netherland)

†All authors have contributed equally to this work.
‡Φ-lab, European Space Research Institute (ESRIN), Via Galileo Galilei, 1, 00044

Frascati RM (Italy)

1

ar
X

iv
:2

21
2.

05
23

6v
1 

 [
cs

.N
E

] 
 1

0 
D

ec
 2

02
2



underlying (analogue) hardware substrate, which Hinton argues (accord-
ing to us correctly) might be the only way of obtaining large-scale neural
networks that are energy-efficient – a concept that is closely following the
neuromorphic paradigm.

The emphasis on low power and energy efficiency of neuromorphic devices
is a perfect match for space applications. Spacecraft – especially miniatur-
ized ones – have strict energy constraints as they need to operate in an envir-
onment which is scarce with resources and extremely hostile [5]. Numerous
works have been investigating different energy-efficient solutions, especially
leveraging commercial off-the-shelf (COTS) devices, aiming at optimizing
model performance and energy usage trade-offs [5, 6, 7, 8, 9] much less have
investigated neuromorphic devices. Early work [10, 11] performed in 2010 at
the Advanced Concepts Team (ACT) suggested considering a neuromorphic
approach for onboard spacecraft applications. Focusing on optic flow detec-
tion [12, 13], these preliminary works showed the possibility to safely land
a spacecraft on an unknown planetary surface, assuming a neuromorphic
approach to sensing based on the Elementary Motion Detector (EMD) [14],
a device inspired by the visual system in flying insects. More recently, with
the availability of new neuromorphic sensors such as the Dynamic Vision
Sensor [15, 16] and chips such as Loihi [17], TrueNorth [18], Akida and oth-
ers, the interest on neuromorphic architectures for spacecraft missions grew
considerably.

Another significant potential advantage of neuromorphic hardware for
space applications concerns radiation. Earth’s atmosphere and magnetic
field protects us from a lot of the cosmic radiation, but this poses a consid-
erable problem even in relatively low orbits. While in many instances it can
damage the actual hardware, radiation can also interfere with its operation
(for instance, by flipping bits in memory), leading to software failure. Neur-
omorphic hardware can potentially mitigate these issues since, apart from
intermittent spikes, it is in fact mostly silent. [19].

In addition to processors, also event-based cameras have contributed to
the growing interest in the field of neuromorphic engineering. Event-based
vision sensors are well equipped for operation in space: they have a very high
dynamic range (on the order of 120dB), respond only to moving segments in
the visual field with very low latency and, most importantly, consume very
little power due to their sparse output (on the order of mW ). Naturally,
these advantages come at a price – for instance, very high noise in very dark
environments and proportionally low fidelity for slow-moving objects in the
visual field.

In Section 6, we present several research lines that aim to harness these
advantages and mitigate the downsides of event-based vision. Before diving
into neuromorphic sensing though, we will first give a brief introduction to
neuromorphic algorithms (Sections 2 and 3) and neuromorphic hardware
platforms (Section 4) to then discuss past and current research mainly con-
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Figure 1: (A) Illustration of an action potential or sodium spike [20], an electrical pulse
that is sent through the axon, which acts as the ‘output cable’ of a neuron, as a signal
to other neurons. For computational purposes, it can be reduced to simply the time of
its occurrence (bottom). (B) Presynaptic spikes trigger currents I(t) at the postsynaptic
neuron, with strength and direction depending on the interaction strength wi (commonly
referred to as synaptic weight in NN research).

ducted by the ACT on evaluating the feasibility of a neuromorphic approach
for onboard AI applications (Section 5). We hope that this chapter will
stimulate further research pursuing a neuromorphic approach to spacecraft
onboard computation and sensing.

2 Spiking neural networks

Arguably, the feature which is found most often in modern neuromorphic
algorithms is spike-based communication. In the mammalian brain, neurons
communicate with each other using action potentials (‘spikes’ or ‘events’)
– electrical pulses with a stereotypical shape where only the time at which
the spike occurs carries information (Fig. 1A). This realizes a highly sparse,
and hence energy efficient, computing paradigm, as neurons only actively
change their internal state when excited by an incoming spike, remaining
passive otherwise.

Mathematical models of spiking neurons differ substantially in terms
of computational complexity and biological realism. A widely used model
(both in terms of algorithms and neuromorphic hardware) is the Leaky
Integrate-and-Fire (LIF) neuron model, which adequately balances com-
plexity and realism. The LIF model represents a biological neuron as an
RC-circuit1 with capacitance C and resistance R. The capacitor maintains
an electric voltage u (the ‘membrane potential’) and is charged by an elec-
tric current I on a characteristic time scale τ = R · C (the ‘membrane time
constant’):

τ
d

dt
u(t) = −u(t) +R · I(t) . (1)

1I.e., an electrical circuit with a resistor and capacitor coupled in parallel.
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More specifically, u(t) represents the potential difference between the inside
and outside of the neural cell caused by different ion concentrations. Via
R, ions can ‘leak’ through the membrane until an equilibrium potential
is reached (here, the equilibrium potential is set to 0 for simplicity). The
current I(t) is caused by the spikes of source (‘presynaptic’) neurons (labelled
with indices i ∈ N here), which connect to the target (‘postsynaptic’) neuron
through synapses with interaction strengths wi ∈ R. In the absence of spikes,
I(t) decays to 0 and increases or decreases only whenever a presynaptic
spike arrives, with strength and polarity depending on the value and sign
of wi (Fig. 1B). The postsynaptic neuron emits a spike at time ts when the
membrane potential crosses a threshold value2 ϑ, u(ts) = ϑ (Fig. 2A). In
biological neurons, the ability to spike is diminished for a short period of
time (known as the ‘refractory period’) immediately after spiking, as the
mechanism responsible for creating action potentials has to recover first.
This is often modelled by clamping the membrane potential to a reset value
for the refractory period (Fig. 2A, yellow shaded areas). Without the leak
term −u(t), the model is reduced to the Integrate-and-Fire (IF) neuron
model.
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Figure 2: Comparison of SNNs and ANNs. (A) In a LIF-based SNN, presynaptic spikes
(left, blue) lead to fluctuations in the membrane potential of the postsynaptic neuron
(right, orange). When the membrane u reaches a threshold value ϑ, a spike is emitted
and the membrane potential is clamped to a reset value for a period of time during which
subsequent spiking is impossible (area highlighted in yellow). (B) In an ANN, real-valued
activations ai are multiplied by weights wi and summed up at the postsynaptic neuron.
The output a of the postsynaptic neuron is a non-linear function ϕ(·) of this sum.

The realism of the LIF model can be further increased by extending
Eq. (1) with additional terms. For instance, the Adaptive Exponential LIF
model (AdEx) [22] further adds action potential shapes to u(t) as well as
spike-rate adaptation, where prolonged tonic spiking (i.e., permanent activ-
ity) of a neuron is preceded by a period of increased or decreased activity.
The temporal dynamics of AdEx neurons is capable of replicating a broad

2This threshold is not physically manifested in biological neurons, but it is a reasonably
good approximation for modelling their response behaviour [21].
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range of dynamics observed in biological neurons. In particular, it has been
found that adaptation is employed by neurons for solving temporal tasks
such as sequence prediction (see, e.g., [23, 24]).

In principle, every architecture that exists for ANNs can be converted
into a spiking neural network (SNN) by replacing artificial neurons with
spiking neurons, e.g., LIF neurons. However, ANNs and SNNs are different
in two key aspects: (i) as discussed above, spiking neurons are characterised
by a dynamic internal state, while artificial neurons possess no intrinsic
state or dynamics, and therefore have no intrinsic ‘awareness’ of time; and
(ii) spiking neurons interact by triggering currents at specific times through
spikes, while artificial neurons communicate directly with each other via
real-valued activations (Fig. 2B). Even though the event-based nature of
SNNs makes them potentially more energy efficient than ANNs, it is still an
open question whether it also provides other advantages (e.g., in terms of
performance, robustness to noise or training time). A key challenge hereby
is identifying how information can be efficiently encoded in the temporal
domain of spikes [25]. A selection of proposed spike-based encoding schemes
addressing this question is summarized in Table 1 and illustrated in Fig. 3.
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Figure 3: An illustration of spike-based encoding schemes. (A) TTFS encoding. (B) Rank
order encoding with a population of two neurons. (C) Example of how concepts can be
encoded and decoded (via similarity) in spike trains. Here, the spike train representing
‘Pig’ and ‘Animal’ are similar, while ‘Moon’ and ‘Animal’ are dissimilar. For clarity, the
differences between spike times are shown in gray. (D) Encoding as random samples.
At every point in time, a sample can be read out from the network, with neurons being
in state ’1’ while refractory (yellow area) and in state ’0’ otherwise. (E) Encoding with
bursts, short and intense periods of spike activity. (F) Rate-based encoding.

In general, for machine learning applications it would be preferred to
have a learning algorithm that automatically finds the optimal (combina-
tion of) encoding schemes. Although training SNNs has been a daunting
task for a long time, recent progress in terms of both theory and software
infrastructure has enabled exactly such end-to-end learning for SNNs, open-
ing novel opportunities for building highly efficient and powerful spike-based
AI systems.
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Encoding
scheme

Description

Time-To-
First-Spike
(TTFS) [26]

Given a stimulus onset at time t0, information is encoded in the
time required for any neuron in a population of neurons to emit its
first spike (Fig. 3A). This encoding scheme allows fast processing
(i.e. low latency) and is highly energy efficient since each involved
neuron spikes only once at the most in order to solve a given task.

Rank order [26] Information is encoded by the order in which spikes occur in a
population of neurons given the onset of a stimulus (Fig. 3B). Thus,
in contrast to TTFS, the exact spike time becomes irrelevant, but
information can still be processed using only a low number of spikes
depending on how many of the earliest spikes are used for encoding
the input.

Spike patterns Instead of only using single spikes to represent information, whole
spike patterns of individual neurons or populations can be used
[27, 28]. For instance, in [29], symbolic information (e.g., abstract
concepts) is represented by spike trains, and relatedness between
concepts is encoded in the similarity of spike trains (Fig. 3C).

Sampling In neural sampling, neurons represent sampled values of binary
random variables (refractory after spiking = 1, non-refractory = 0),
allowing them to encode probability distributions (Fig. 3D). This
is suitable for approximating, e.g., sampling-based deep learning
architectures such as restricted Boltzmann machines [30, 31].

Bursts Information can be encoded in bursts, i.e., short periods of high
spike activity (Fig. 3E). For instance, in [32], bursts have been used
to propagate information through SNNs that guides learning.

Rates An instantaneous spike rate obtained by averaging over spiking
activity (either over time or populations) carries the information
(Fig. 3F). Since the spiking rate is a continuous variable, it encodes
information in a similar way to ANNs.

Table 1: Different ways of encoding information using spikes.

3 Learning algorithms for SNNs

One of the main enablers of the incredible success of deep learning in recent
years is the error backpropagation algorithm (‘backprop’). However, for
a long time, this success did not pass over to SNNs – mostly due to the
threshold mechanism of spiking neurons that leads to vanishing gradients
at all times except at the time of threshold crossing [33] (cf. Fig. 4 for an
illustration of the concept of surrogate gradients, which present one solution
to this problem). Instead, to apply SNNs to a variety of machine learning
applications, it was customary to convert the parameters of a trained ANN to
a SNN [34]. SNNs ‘trained’ this way typically show a significant degradation
in performance compared to the original ANN. In addition, the mapping
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promotes purely rate-based encoding in the SNNm which has been found
to reduce the energy efficiency of SNNs [35, 36]. An alternative approach
is to use biologically inspired learning rules, such as Spike-Time-Dependent
Plasticity (STDP) [37] or variants thereof, although they do not scale well
beyond shallow networks3.

Recently, several approaches have been found for successfully unifying
SNNs and backprop, which have become the de facto state of the art for
training SNNs on machine learning tasks and are currently being investig-
ated at the ACT. For instance, one approach is based on SNNs using neuron
models where the TTFS is both analytically calculable and differentiable,
allowing gradients to be calculated exactly without having to deal with the
discrete nature of the threshold mechanism [39, 40, 41, 42], although this
method is limited to neurons that only spike once.

initial finalweight interpolation

True loss

Surrogate loss

BA Real gradient

Surrogate
gradients

𝑢(𝑡)
𝜗

Figure 4: Illustration of the surrogate gradient method. (A) The gradient of the threshold
function is a Dirac delta peak, which is infinite at u = θ and vanishes otherwise (gray). In
the surrogate gradient approach, this gradient is replaced by a well-behaved function, such
as a mirrored Lorentz function (orange) or a triangular function (blue). (B) In a SNN, the
landscape of the loss function has discontinuities due to the spiking mechanism (gray).
Especially long plateaus with constant loss inhibit learning. Using surrogate gradients
‘smoothens’ the loss landscape (blue trace). Here, the loss landscape is illustrated by
interpolating between two sets of weights of a SNN. Reproduced based on [33].

At the time of writing, the most widely used approach is the so-called
“Surrogate Gradient” method, which is applicable to all kinds of spiking
neuron models [33, 43]. Here, the gradient of the threshold function is
replaced with a surrogate function that has non-zero parts for membrane
potential values away from the threshold (Fig. 4A). This ‘softening’ of the
spike threshold gradient function allows gradient information to flow con-
tinuously through the network (Fig. 4B), enabling end-to-end training of
SNNs capable of utilizing the temporal domain of spikes to find, e.g., highly
sparse and energy efficient solutions. For instance, in [44] SNNs are trained

3As of late, several biologically plausible learning rules that are applicable to deep
neural architectures have been proposed [38]. However, they lack the flexibility and theor-
etical guarantees of backprop, i.e., they are not proven to minimize a task-dependent (and
customizable) loss function. Nevertheless, they present intriguing alternatives for training
SNNs.
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that reach a competitive classification accuracy (≈ 1.7% test error) on the
MNIST handwritten digits dataset [45] with, on average, only 10 to 20 spikes
per inference. Surrogate gradients can be used to optimise not only the
weights but all parameters that influence the dynamic behaviour of spiking
neurons, such as time constants and spike thresholds of individual neurons
– with potential benefits for the robustness and expressiveness of SNNs [24,
46]. A major downside of the surrogate gradient method is that currently
there is no theoretical framework for choosing the shape of the surrogate
gradient function. Nevertheless, initial evidence suggests that the approach
is relatively robust with respect to this choice [44]. In the future, this down-
side could be alleviated through exact derivations of gradient-based learning
rules for SNNs (see, e.g., [47]). Additional information on the current stand-
ards for training SNNs can be found in [33, 48].

To summarize, the surrogate gradient method enables end-to-end train-
ing of SNNs using error backpropagation. Several open-source packages are
available that standardize and ease the implementation and training of SNNs
by utilising existing libraries for automatic differentiation. Currently, four
general SNN libraries based on pyTorch are being developed: Norse [49],
spikingjelly [50], snnTorch [48] and BindsNET [51]. The first three adopt
both the workflow and class structure of pyTorch, effectively extending it to
support SNNs. The last one is geared towards developing machine learning
algorithms that take inspiration from biology. Even though it does not sup-
port gradient-based learning, it contains a larger variety of neuron models
and biologically inspired learning rules than the other three packages. In
general, the emerging landscape of SNN libraries greatly reduces the de-
velopment time of SNN-based algorithms, painting a promising picture for
further exploration of the capabilities and potential benefits of SNNs. In ad-
dition, it increases the accessibility of SNNs to researchers outside the field
of neuromorphic computing and computational neuroscience by making it
possible to seamlessly exchange or interweave ANNs and SNNs in a common
framework. Thus, in the coming years we can expect to see an increasing
number of contributions from the aerospace field attempting to incorporate
spike-based algorithms and hardware onboard spacecraft.

4 Existing hardware

Although end-to-end training of SNNs is possible nowadays, exploring their
capabilities remains challenging due to the computationally demanding nature
of simulating the internal neuron dynamics of spiking neurons. In contrast
to artificial neurons, the dynamics of spiking neurons have to be solved
using numerical solvers for ordinary differential equations, introducing a
significant overhead. Thus, on conventional hardware systems, the benefit
of spike-based coding (in the absence of spikes, no active computations are
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performed) is not immediately apparent.
An emerging technology that is capable of harnessing the potential of

spike-based information processing is neuromorphic hardware, which ex-
plores novel computing architectures and paradigms that closely emulate
how the brain processes information. Standard computer architectures sep-
arate processing units and memory (storing data and instructions for the
processor), introducing a bottleneck due to the constant flow of data between
memory and processor (the so-called ‘von Neumann bottleneck’). Instead,
neuromorphic hardware follows several design philosophies that can be found
in the mammalian brain.

• No separation between processing and memory. Thus, a processing
unit (e.g., a neuron) can only access information that is locally avail-
able (e.g., synaptic weights or activity of other neurons that it is con-
nected to);

• Large-scale parallel computing;

• Asynchronous instead of clocked computations;

• Event-based information processing (i.e., using spikes instead of con-
tinuous values);

• (Re)programming the chip consists of (re)mapping networks or adapt-
ing network parameters through learning;

• Time-continuous and locally constrained learning rules.

Broadly speaking, neuromorphic hardware comes in two flavours: digital
and analogue. Both designs are transistor-based (i.e., CMOS), but the tran-
sistors are used in different operating regimes. In simple terms, digital means
calculating with discrete-valued bits (i.e., transistors take the states ‘on’ and
‘off’), while analogue means calculating with continuous-valued currents and
voltages. Digital chips provide stable solutions that are closer to commonly
used hardware chips. Analogue chips have to deal with noise (e.g., man-
ufacturing noise of components, cross-talk between electrical components,
temperature dependence) and have a longer development cycle, but provide
intriguing advantages such as high energy efficiency and potentially acceler-
ated (compared to biology) emulation of neuron and network dynamics. In
addition to CMOS, memristor-based circuits4 are being developed that open
novel opportunities for energy-efficient and adaptive neuromorphic devices.

Examples of digital neuromorphic systems are Loihi (1 and 2) (developed
by Intel) [17], TrueNorth (developed by IBM)[18], Akida (developed by

4A memristor is a fundamental electrical element that displays a hysteretic resistance
profile where the resistance depends on the recent history of current that has passed
through the element.
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Brainchip), SpiNNaker(1 and 2) [52, 53], Darwin [54] and Tianjic [55]. Ex-
amples of analogue chips are BrainScaleS (1 and 2) [56] and Spikey [57],
DYNAPs [58], ROLLS [59] and Neurogrid [60]. A thorough review of state-
of-the-art neuromorphic platforms at the time of writing can be found in [1].
Two of these platforms (Loihi by Intel and BrainScaleS-2 by the University
of Heidelberg) are discussed in more detail below to further illustrate the
difference between digital and analogue platforms.

First, Loihi’s (Fig. 5A) main components are neuromorphic cores, which
are processing units with custom circuitry and small amount of memory
necessary to simulate a population of LIF neurons and their plasticity (i.e.,
learning rules). Spikes are exchanged between neuromorphic cores using a
routing grid. In contrast, the BrainScaleS-2 chip (Fig. 5B) realizes physical
AdEx neurons and synapses to emulate biology – in other words, neurons
and synapses are not simulated but rather implemented directly as analogue
circuits. Hence, no simulation time step exists and the system evolves con-
tinuously. Although neurons and synapses are implemented using analogue
circuits, spikes are transmitted digitally (also known as “mixed-signal”).
Through a synaptic crossbar, connections can be set flexibly and are not
pre-wired.

BA Neuromorphic core

Spike routing

Neurons

Synapse

Spike routing

Plasticity processor

Figure 5: (A) Simplified schematic of the Loihi chip [61]. (B) Simplified schematic of the
BrainScaleS-2 chip. Spikes emitted from the neurons enter the synaptic crossbar through
synapse drivers (orange triangles) and, in essence, arrive at the target neuron when a
connection is set (red dot). Each horizontal line in the crossbar is an input line for a
neuron [56].

The main potential of neuromorphic hardware lies in enabling the de-
ployment of energy-efficient low-latency AI systems suitable for edge applic-
ations. First glimpses into this potential can already be obtained nowadays:
in Table 2, we list a few neuromorphic platforms that provide both perform-
ance and energy benchmarks for MNIST classification, with most systems
reaching an energy footprint on the order of µJ per inference. We chose
MNIST here as it is the most commonly used benchmark and allows for
easy comparison across different (non-)neuromorphic platforms. However,
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it has been noted that SNNs perform best on data with temporal structure,
meaning that MNIST is less suited as a benchmark for showing the advant-
ages of SNNs as well as neuromorphic hardware [44, 62]. In fact, we argue
that in order to better assess the potential of neuromorphic devices, stand-
ardized and application-specific benchmarks are required to fairly evaluate
both algorithms and hardware platforms.

A recent feature of neuromorphic chips that is especially interesting for
space applications is on-chip learning, found in chips like Loihi, BrainScaleS-
2 and SPOON [63]. On-chip learning enables continuous learning directly
integrated in the neuromorphic chip with a low energy footprint, suitable for
the distributed design philosophy of neuromorphic devices. In the future,
such ‘intelligent’ neuromorphic devices could be especially useful for retrain-
ing or fine-tuning onboard models during deep space missions toautonom-
ously adjust and adapt to previously unknown or unexpected circumstances.

Platform Type Tech Model MNIST Energy / Image

Unnamed (Intel) [64] digital 10nm LIF 97.70% 1.7µJ

Intel Loihi [17] digital 14nm LIF 96.40% n.a.∗ [65]

94.70% 2.47mJ [66]

IBM TrueNorth [18] digital 28nm LIF1 92.70% 0.268µJ

99.42% 108µJ

Brainchip Akida [67] digital 28nm IF 99.20% n.a.∗,2

SpiNNaker-2 [53] digital 28nm –3 96.60% 23µJ [68]

SPOON [63] digital 28nm –4 97.50% 0.3µJ5

BrainScales-2 [56] analogue 65nm AdEx 96.90% 8.4µJ [42]

SpiNNaker [52] digital 130nm –3 95.00% 3.3mJ [69]

∗ Not available.
1 [18] states that TrueNorth implements “(...) a dual stochastic and deterministic neuron based on an
augmented integrate-and-fire (IF) neuron model [70]”.
2 https://doc.brainchipinc.com/zoo_performances.html. Accessed: 2022-11-07.
3 SpiNNaker is an ARM-based processor platform and can therefore support arbitrary neuron models as long as
a software implementation for SpiNNaker is available.
4 SPOON is an “event-driven convolutional neural network (eCNN) for adaptive edge computing” where
“TTFS encoding” is used “in the convolutional layers” [63].
5 Pre-silicon simulation result.

Table 2: A list of neuromorphic platforms benchmarked on MNIST. As a baseline, [42]
provides values for a convolutional ANN implemented on a nVidia Tesla P100, reaching
99.2% accuracy with an average energy / image of 852µJ. It should be noted that all
neuromorphic platforms here process images sequentially, while the GPU uses batching.
For sequential processing, [66] reports an accuracy of 98.90% with an average energy /
image of 37mJ (Intel i7 8700) and 16mJ (nVidia RTX 5000). Of the results shown above,
only TrueNorth, Akida and SPOON implement a convolutional SNN. Table adapted from
[42].
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5 Application to onboard processing for Earth ob-
servation

As previously mentioned, the potential advantages of SNNs (e.g., in terms
of energy efficiency) are promising for data processing, especially onboard
miniaturized satellites. However, when applied to static data, as is the case
in the classification of Earth observation images, it is not clear how SNNs
compare to ANNs in terms of energy, latency and performance trade-offs
[36]. For instance, some previous works [71, 72] showcase that when rate
coding is used, the advantages of SNNs in terms of energy/performance
decrease for classification datasets which contain complex features. This
makes satellite data a challenging task for SNNs because of the complex-
ity of their features [36]. For that reason, ESA’s ACT, in collaboration
with ESA’s Φ-lab, is currently benchmarking SNNs and ANNs for onboard
scene classification. The latter was chosen as a target application due to the
abundance of benchmark datasets such as EuroSAT [73, 74] which was also
the dataset chosen by the ACT for this project. EuroSAT is a 10-classes
land-user and land-cover classification dataset consisting of images captured
by the Sentinel-2 catellite. For the study, the RGB version of the images
was used. We are mostly investigating different information encoding solu-
tions (including rate encoding and spike-time encoding) and their impact
on the energy and accuracy that could be expected in performing onboard
inference using an end-to-end neuromorphic approach. The results of past
and ongoing efforts are presented in Sections 5.0.1 and 5.1, respectively.

5.0.1 Rate-based SNNs for onboard Earth observation

Rate-based models were explored in a previous work by the ACT [36],
where the SNN model was trained by exploiting the approximate equival-
ence between spike rates of IF neurons and ReLU activations of artificial
neurons, fundamentally using a weight conversion technique as discussed in
Section 3 with limited loss in accuracy [36]. The methodology is summarized
in Fig. 6.

As a first step, we started from a VGG16 ANN model [75] pretrained on
ILSVRC-2012 (ImageNet) [76]. We replaced the last three dense layers with
a cascade of average pooling and dense layers. Furthermore, we replaced
the max pooling with average pooling layers that do not require lateral
connections and offer an easier implementation for spiking models [36]. The
VGG16 network was then trained on the EuroSAT RGB dataset. To convert
the trained ANN model, we replaced the ReLu activation function with a
cascade of IF neurons and post-synaptic filters, whose dynamic behaviour
is described in [36]

y(t) :=
(

1− e−∆t/τ
)
· x(t) + e−∆t/τ · x(t− 1), (2)
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Figure 6: Rate-based SNN vs ANN performance/energy benchmark methodology used in
our previous work [36].

where x(t) is the output spike train of a neuron at time t, y(t) is the out-
put of the postsynaptic filter, and ∆t is the timestep width. Finally, the
converted SNN model is retrained to optimize the performance. To estim-
ate and compare the energy consumption of the SNN and ANN models,
we exploited the methodology implemented in KerasSpiking. In particular,
more than performing an accurate estimation of the energy consumption,
the methodology used aimed at allowing a relative comparison [36]. By
considering a single spiking layer L, the used methodology assumes that the
energy consumption during the inference is mostly due to two contributions:
energy dissipated due to the synaptic activity Es and energy usage due to
neuron updates En. Es can be calculated as

Es = Eo ·
∑
N

SN · fin ·Nt ·∆t , (3)

where Eo is the energy for a single synaptic operation and depends on the
hardware used, SN is the number of synapses for every neuron, fin is the
average neuron spiking rate, Nt is the number of timesteps in the simulation
and ∆t is the timestep width. For artificial models, fin = 1

∆t and Nt = 1.
Furthermore, En can be calculated as

En = Eu ·Nn ·Nt , (4)

where Eu is the energy for a neuron update and depends on the hardware
(similarly to Eo), and Nn is the number of neurons in a layer. The total
energy consumption for a model is then given by the sum of the contribu-
tions of the different layers. Since for the SNN models, the energy depends
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Model
Accuracy

[%]
T

∆t

[s]

Energy

[J]

on GPU

Energy

[J]

on Loihi

ANN 95.07 1 - 0.06996 0.00636

ANN + Prewitt 90.19 1 - 0.06996 0.00636

SNN

(Best accuracy)
85.11 4 0.0381 - 0.00444

SNN + Prewitt

(Lowest energy)
87.89 4 0.0403 - 0.00205

SNN + Prewitt

(Highest accuracy)
85.07 1 0.0813 - 0.00476

Table 3: Summary of the results shown in Table 2 of [36].

on Nt and ∆t, different SNN models were trained to explore various en-
ergy/accuracy trade-offs. To that end, we trained different models by setting
the number of timesteps Nt ranging from 1 to 32 and making ∆t a learnable
parameter. The constant τ of every neuron post-synaptic filter was also
trained to optimize the dynamic response of each neuron. In addition, since
Es is proportional to fin. Therefore, in order to reduce the average rate for
each neuron, the input was processed with a Prewitt filter, whose dynamics
is given by

X′ := max

(
c
√

(G~X)2 + (G> ~X)2, 0.0078 · 1
)
, (5)

where

G :=
(

1 1 1
)> (

1 0 −1
)
,

and ~ represents the two-dimensional convolution operator, 1 is a unit-
ary tensor having the same shape as the input X, and c is a normalization
constant. The effect of the Prewitt filter is to concentrate the input spikes
mostly around the boundaries of different crops while keeping the input
color information. Training was performed with and without applying the
Prewitt filter to test its effects. Since the energy depends on the hardware
used through the constants Eo and Eu, to estimate the energy consump-
tion we tested various models on different hardware, including on desktop
CPU (Intel i7-4960X), one embedded processor (ARM Cortex-A), one GPU
(nVidia GTX Titan Black) for ANN models and SpiNNaker [52], SpiNNaker
2 [53], and Loihi [17] neuromorphic processors for both the ANN and SNN
networks. The test results are summarized in Table 3.

The maximum accuracy of the SNN model was 85.11% and 87.89% with
and without Prewitt filtering, respectively [36]. The ANN models reached

14



95.07% and 90.19% with and without Prewitt filter, respectively. In ad-
dition, the input filter had a strong effect on the tradeoff between energy
consumption and accuracy for SNN models, whereby the energy consump-
tion dropped by half while maintaining similar accuracy or the accuracy
increased by over 2% with a similar energy consumption. The drop in ac-
curacy of the SNN + Prewitt (highest accuracy) and SNN + Prewitt (lowest
energy) was 1.18% and 10%, respectively, which was significant. However,
when compared to the GPU implementation of the ANN, inference with
SNN + Prewitt (highest accuracy) and SNN + Prewitt (lowest energy) on
Loihi required 14.70 and 34.13 times less energy, respectively. Since this im-
provement was partially because of the higher efficiency of Loihi compared
to the GPU, we also tested the inference performance of the ANN model on
Loihi to eliminate the effects of the hardware. Even in this case, the energy
consumption was 3.1 and 1.3 times lower compared to the SNN + Prewitt
(lowest energy) and SNN + Prewitt (highest accuracy) models. However, to
obtain more realistic estimates, future work will aim at more hardware-aware
proxies that also take into account other effects, such as on-chip saturation
effects and power-consumption due to off-chip accesses, which might affect
the estimates presented here. In addition, the results seem to confirm trends
described in [71, 72], according to which longer simulation leads to better
accuracy at the expense of energy consumption when rate coding is used.
Because of that, as described in Section 5.1, different information encoding
solutions shall be explored.

5.1 Spike-time-based SNNs for onboard Earth observation

Additional encoding schemes, such as temporal encoding, and surrogate
gradient training approaches are currently being explored that could yield
better trade-offs for Earth observation. By encoding information in spike
times instead of rates, information can be processed with a much lower
number of spikes, leading to higher sparsity in the network activity and con-
sequently lower energy consumption. We are focusing on two approaches:
(i) training SNNs that solely use TTFS encoding, either trained with exact
gradients or surrogate gradients, and (ii) training SNNs end-to-end using
surrogate gradients without imposing any specific encoding scheme. Our
evaluation of models is two-fold: performance and network metrics (for in-
stance, the average number of spikes per inference) are investigated in sim-
ulation using SNN frameworks such as Norse. In addition, we are mapping
parts of these models to the neuromorphic chips Loihi and BrainScaleS to
obtain an estimate for the energy efficiency of a fully neuromorphic imple-
mentation. As this is still an ongoing study, only a few preliminary results
will be discussed here.

Performance-wise, we found that convolutional architectures trained end-
to-end show the highest accuracy. We implemented a spike-based convolu-
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tional neural network (CNN) with 4 layers (3 convolutional, 1 dense layer)
that takes the pixel values of images (rescaled to be between 0 and 1) as
input currents. In this architecture, the output layer consists of LIF neur-
ons without a threshold mechanism, i.e., without spiking. All other layers
consist of LIF neurons. A classification result is given by the index of the
neuron with the maximum membrane potential value during the whole sim-
ulation time – in simpler terms, the label neuron that obtained most votes
from the last hidden layer provides the classification outcome. Trained end-
to-end, this model achieves competitive results (≈ 91 − 92% test accuracy
on EuroSAT RGB) with low spike activity (on average ≈ 2 − 3 spikes per
neuron during inference).

Moreover, we are investigating SNNs based on TTFS encoding for all
layers (input, hidden and output). Thus, in the label layer, the classification
outcome is given by the label neuron that spikes first. We are currently
exploring both models that can be trained using exact gradients and ones
that can be trained using surrogate gradients. Preliminary results show that
these models reach slightly lower accuracy, although they also require fewer
spikes per inference than models without pre-imposed encoding. In general,
these initial results already hint at a confirmation that direct training of
SNNs using surrogate gradients leads to better results than (rate-based)
weight conversion for Earth observation image processing tasks.

6 Neuromorphic sensing

In addition to processing, neuromorphic computing has also entered the do-
main of perception, most notably in the area of computer vision. Biological
systems provide a rich source of inspiration due to their energy efficiency,
strong data compression and feature extraction properties as well as remark-
able adaptability. A widely used example of biological computations is the
visual system in flying insects, which has been deeply researched in the last
decades (e.g. [77, 78]). Research on the neuronal systems in insects allows
for single-neuron analysis and thus provides very detailed insights on the
internal working mechanisms of insect vision. The primary source of motion
information in insects is the so-called EMD - Elementary Motion Detector
(e.g. [14]). EMDs are a minimalistic neural architecture able to extract
important motion information from only two photoreceptors. Preliminary
studies performed at the European Space Agency on their applications to
spacecraft landing [10, 11, 12, 13] have suggested the possibility to use EMDs
as the only needed sensor to successfully land spacecraft in specific scen-
arios. A second example of highly efficient and adaptive biological sensor
is the mammalian retina, which is composed of several layers of neurons
specialised in processing visual information. The mammalian visual system
is important to understand the biological inspiration behind the concept
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of event-based vision, which we later focus on, thus the following section
provides a brief overview of its structure and function.

6.1 Structural and functional organisation of the retina

The structural and functional organisation of the mammalian retina has
been explored in great detail over the past few decades. The elaborate 1965
study by Hubel and Wiesel [79] was the first to present a collective summary
of many fundamental properties of the retina, such as the hierarchy of retinal
neurons, their receptive fields (RFs) and orientation selectivity, and so forth.
The mammalian retina consists of several layers containing nerve cells and
receptors that perform highly specialised functions [80]. The following is a
brief overview of the main types of cells found in the mammalian retina,
together with their main distinctive features.

Receptors The outer nuclear layer (ONL) contains the actual photo-
sensitive receptors: rods, which are responsible for scotopic vision (low-light
conditions), and cones, which are responsible for photopic vision (in well-
lit conditions). Furthermore, rods function in low-light conditions but do
not distinguish colour, whereas cones are active in display colour specialisa-
tion (e.g., responding to light in the red, green or blue part of the visible
spectrum). Receptors are excitatory cells.

Horizontal cells The signal produced by receptors in the ONL is modu-
lated by horizontal cells, which provide local inhibitory signal informed by
the immediate neighbourhood of the receptor. Horizontal cells are respons-
ible for local brightness adaptation (especially in the foveal region) as well
as the formation of ON/OFF RFs in ganglion cells [81]).

Bipolar cells The raw visual input normalised through feedback from ho-
rizontal cells is then fed into bipolar cells, which effectively split the visual
channel into two pathways (ON and OFF) [81]. This means that ON bi-
polar cells respond to an increase in brightness, whereas OFF bipolar cells
respond to a decrease in brightness. The separate pathways are preserved
all the way to the visual cortex and have been shown to be asymmetric in
terms of their behaviour – for instance, the OFF pathway reacts faster and
sends stronger signals to the cortex compared to the ON pathway [82]. In
addition, while horizontal cells provide the retina with spatial brightness ad-
aptation capabilities, bipolar cells are responsible for temporal adaptation
and filtering [83, 84].

Amacrine cells The excitatory signals produced by bipolar cells are com-
bined with inhibitory feedback from amacrine cells in many different con-
figurations. There are more than 30 types of amacrine cells, whose primary
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function is to combine the signals arriving from bipolar cells in many dif-
ferent configurations that define, modulate and control the RFs of ganglion
cells via inhibitory synapses [84] (however, there is a possibility that they
also provide excitatory signals via gap junctions [85]).

Ganglion cells Amacrine and bipolar cells form different wiring patterns
providing input to the ganglion cell layer (GCL). Different ganglion cells
have different RFs, which determine their selectivity to certain patterns
(both static and dynamic, such as orientation, motion or combinations of
both) in the visual field [81]. For instance, some ganglion cells respond to
edges, others are highly sensitive to motion relative to the background in the
visual field, and yet others respond to approaching motion while remaining
silent in response to lateral motion [84]. While ganglion cells are officially
considered to be the first neurons in the retina that produce spikes [86] (the
other cells have graded responses), there are indications that at least bipolar
cells also produce a limited number of spikes [87] that are phase-locked to
visual stimuli.

Counterintuitively, the ONL is the innermost layer of the retina, which
means that light has to travel through all the other layers before it reaches
the receptors. This and other structural properties of cellular layers in the
retina have several functional implications.

• The GCL contains a lot of cell bodies as well as axons which relay
spikes via the optic nerve to the visual cortex. Since the GCL is on
top of the receptor layer, the part of the retina where ganglion cell
axons interface with optic nerve is devoid of receptors, giving rise to
the infamous blind spot.

• A small area of the retina known as the fovea, which is located at the
centre of the retina directly behind the lens, contains the highest con-
centration of receptors. To maximise the resolution in the fovea, the
axons of ganglion cells in the fovea are highly stretched out, forming
a dense circular bunch of axon bodies around the fovea, where the
resolution starts to drop sharply.

• At least in humans (and many other mammals), most of the colour-
sensitive receptors are in the foveal region. Away from the fovea,
vision is dominated by rods, which are much more sensitive (down to
a single photon [88]) but not colour-specific. This is easily observed in
low-light conditions, where our visual perception shifts towards detect
only silhouettes).

• The RFs of ganglion cells responsible for encoding signals from the
fovea are connected to as few as a single receptor, while the RF size
increases further away from the fovea. This eccentricity-dependent
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RF size has been found to have a number of interesting consequences
for scene recognition, including cortical magnification, scale invariance
and object recognition [89, 90].

6.2 Adaptation and homeostasis in the retina

Adaptation is a hallmark of most types of neurons and circuits found in the
retina, a lot of research effort has been dedicated to unveiling the underlying
principles of visual adaptation [91, 92]. A number of different homeostatic
processes have been observed in practically all layers in the retina. For
instance, cones have a very large dynamic range and are also extremely
sensitive to small changes in contrast, both in terms of response time and
contrast range. In comparison, rods can detect very low levels of illumination
(as low as individual quanta of light [93]), with the trade-off that they adapt
very slowly and become saturated by large sudden changes in light intensity
[93]. ON-type (OFF-type) bipolar cells have a light center/dark surround
(dark center/light surround) and respond strongly to positive (negative)
contrast. The ON/OFF differentiation is maintained in retinal ganglion cells
(RGCs), which receive input from one of the two types of BCs. The RFs
of both ON and OFF RGCs independently cover almost the entire retina
[94]. The retina uses adaptation mechanisms in BCs and RGCs to adapt to
both spatial and temporal variations in illumination [95, 96]. Both BCs and
RGCs homeostatically regulate the intensity of their output depending on
the magnitude of the stimulus, allowing the retina to adapt to changes in
luminance that span 9 to 12 orders of magnitude over a 24-hour period [97,
98].

Importantly, there is overwhelming evidence that RGCs adapt their
activity to both the mean and the variance of the input [95, 97, 99]. In
addition to temporal adaptation, both ON and OFF BCs also maintain a
fast ‘push-pull’ mechanism mechanism that balances the activation of the
center relative to the surround for the purpose of locally enhancing the con-
trast within the RF [100, 101]. There is even some evidence that RGCs
also employ a gain control mechanism to change the effective size of the RF
based on the illumination [102].

Finally, the eye is not a static sensor – it is constantly performing a com-
bination of motions at various spatial and temporal scales – ocular tremors,
drift, microsaccades and saccades [103]. These different types of movements
serve different purposes: for instance, small random movements (such as
drift and microsaccades), which are outside voluntary control and occur
even while fixating on a target, prevent the phenomenon of visual fading
(also known as retinal fatigue), in which the rapid adaptation of the retinal
ganglion cells to a fixed visual scene leads to the complete elimination of
neural response (the eye effectively becomes blind to anything that is not
moving) [103, 104]. The concept of a vision sensor modelled around the ret-
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ina emerged more than three decades ago by building upon detailed research
on the neuroscience of the mammalian retina. The following section presents
a brief overview of the major milestones since the conception of the earliest
retinomorphic circuits to present-day commercial event-based cameras.

6.3 Retinomorphic models

Neuromorphic systems that specifically deal with modelling the mammalian
visual system (mostly the retina) are known as ‘retinomorphic’ systems
[105]. While some the operating principles of the circuits differ substantially
from that of biological retinal cells, they are in many respects functionally
identical (or at least very similar) to biological retinal cells.

To optimize the power consumption and response speed of sensors, most
recent research on event-based vision is heavily oriented towards hardware
solutions, which are difficult to customise for the purpose of implementing
novel computer vision algorithms and processing paradigms. In addition,
existing software libraries are geared towards processing and emulating the
existing hardware rather than providing a generic base for implementing
novel algorithms.

The ACT is thus pursuing research on retinomorphic models to explore
the question of whether sophisticated visual processing can be performed on
the sensor, rather than being learned by a downstream algorithm. A prime
example can be given with specialised ganglion cells which are sensitive to
certain types of motion in their RF, to the exclusion of all other types of mo-
tion. For instance, there are ganglion cells that are sensitive to approaching
motion while being insensitive to approaching or receding motion [84, 106],
which can be useful for applications such as spacecraft landing, where the
landscape is perceived as approaching from the perspective of the camera.

To maximise the efficiency and speed of onboard processing, it would be
beneficial to design sensors capable of obtaining insight about motion and
features in the visual field, such as edges, depth or optical flow. We know
that biological ganglion cells with different RFs are sensitive only to very
specific features and types of motion in the visual field (such as approaching
motion or egomotion) while largely remaining silent in the presence of other
types of motion (such as receding or lateral motion). It would therefore
make sense to be able to model the function of these cells in a convenient and
reproducible way that could ultimately inform the design of novel dedicated
hardware sensors.

Therefore, the ACT is developing a simulation framework that can model
as many features of the mammalian retina as possible in an efficient manner
in order to facilitate rapid prototyping of retinomorphic architectures. In
particular, our research and development efforts have been geared towards
implementing support for all of the following features:
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• All major types of cells in the retina (cf. 6.1);

• Spatial and temporal adaptation and homeostasis (cf. 6.2);

• Complex RFs (e.g., centre/surround);

• Foveation and eccentricity-dependent RFs;

• Sparsification of cells towards the edges of the retina (i.e., cell distri-
bution becomes increasingly sparse towards the edges of the retina, in
proportion to increasing RF size).

• Saccadic movements (microsaccades, drift, etc.);

As outlined above in Section 6.1, the retina consists of several layers,
whereby cells in each layer (except the photoreceptor layer) receive input
from a certain local neighbourhood of cells cells in the preceding layer(s).
This mechanism is behind the inspiration for CNNs, which have occupied
a central role in computer vision domain of AI research [107, 108]. The
successful application of CNNs on a wide range of tasks, combined with the
availability of several software packages that offer highly optimised CNN
implementations out of the box, has largely dampened any incentive to ex-
plore alternative architectures or mechanisms for implementing convolution.
However, incorporating all of the above features into a coherent framework
is not straightforward, specifically with respect to saccadic movements and
eccentricity-dependent RFs. This requires rethinking how convolution is
implemented.

6.3.1 Sparse convolution

Convolution is a costly operation to implement, and state-of-the-art CNNs
rely on a number of tricks to speed up the process. N -dimensional con-
volution is usually implemented using of a number of convolutional kernels
(represented as a single (N + 2)-dimensional tensor, where N is the number
of dimensions of the input and two extra dimensions representing the num-
ber of kernels and the batch size). Therefore, without loss of generality, we
focus on 2D convolution, unless explicitly stated otherwise.

The generic expression for convolving a batch of N 2D inputs (each
with dimensions H and W ) using Cin convolutional kernels can be given as
follows:

Conv2d(N,Cout, H,W ) =

Cin∑
i=0

W(Cout,i) ? Input(N, i) (6)

The dimensions Hout and Wout of the output channels are computed as
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Hout =

⌊
Hin + 2pH − dH(kH − 1)− 1

sH
+ 1

⌋
(7)

Wout =

⌊
Win + 2pW − dW (kW − 1)− 1

sW
+ 1

⌋
, (8)

Here, p, d, k and s (with indices H and W ) represent the padding,
dilation, kernel size and stride of the convolution operation (in the direction
of H and W , respectively). These four parameters impose constraints on
each other depending on the input since Hout and Wout in Eqs. (7) and (8)
must be integer. For instance, convolving an image of size 32 × 32 with a
kernel of size 5× 5, a stride of 2 and dilation and padding of 0 means that
the convolution would not be symmetrical at the edges of the image since
ensuring that Hout and Wout are integer enforces the convolution operation
to stop short of covering the last column and row of the image. Adding a
padding of 2 around the image mitigates this problem and ensures that the
convolution is symmetric. We refer the reader to the relevant literature for
an in-depth overview of the meaning of these parameters [109].

In practical implementations, convolution relies on a crucial but often
understated preprocessing step. This operation, known as ‘image-to-column’
(or im2col for short) [110] involves stretching out the convolutional kernels
and arranging them into rows of a matrix, and stretching all kernel-sized
subsections of the input into one-dimensional column vectors and arranging
them as columns of another matrix (hence the term im2col, since 2D con-
volutions are most commonly applied to images) (Fig. 7). In this way, the
convolution operation is reduced to a single dense matrix-matrix multiplic-
ation.

It is immediately clear that while it improves the efficiency of convolu-
tion, this approach introduces a number of cascading limitations that impede
the effort to implement the desired features outlined in 6.3:

• All kernels must be the same size, which precludes foveation.

• An inability to convolve the input with kernels of different size limits
the type of RFs that can be implemented; specifically, centre/surround
RFs are difficult to implement with a fixed kernel size, especially in
combination with foveation.

• Sparsification is impossible to model since the operation is by definition
dense, so it applies the kernel to all segments of the input as defined
in Eq. (6).

• It is not trivial to implement saccadic movements as this would entail
performing the im2col preprocessing step for each movement. Fur-
thermore, as an attention shifting mechanism, saccadic movements
are much more useful in combination with foveation.
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(c) Convolution operation.

Figure 7: Default Im2col operation.
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Figure 8: Unfolding a kernel into a sparse matrix. The space redundancy introduced in
this operation is offset by the elimination of the im2col operation.

• Without saccades, adaptation (specifically temporal adaptation) as
observed in the retina quickly erases features in stationary parts of
the image.

To address these limitations, we have developed a straightforward al-
ternative to the default convolution operation. Rather than unfolding the
input, this alternative convolutional method relies on a kernel unfolding
step (tentatively named kernel2row, or k2row for short) that consists of
unfolding the kernels, splitting them into continuous chunks and arranging
those chunks into a sparse matrix, while the input is unfolded into a single
large column vector. The kernel chunks are arranged in such a way that the
result of multiplying the sparse kernel matrix and the stretched input vector
is identical to that obtained with the above dense convolution method. The
k2row operation is outlined in Fig. 8.

The most notable advantage of performing convolution in this way is
that the kernel size can be decoupled from the implementation constraints,
allowing for kernels of different sizes to be used within the same convolution
matrix.

Most of the desired features for simulating a retinal model as outlined in
6.3 can be implemented trivially with this sparse convolution method. For
instance, foveation can be implemented by using smaller kernels towards
the centre of the image than towards the edges. Similarly, a separate kernel
‘instance’ can be used to convolve each pixel of a 2D image, which allows
us to implement complex RFs (such as ones relying on the centre-surround
mechanism) as a difference of Gaussians (‘Mexican hat’ filter) represented
by the difference of two convolutions with kernels of different size. Finally,
saccadic movements can be implemented in combination with foveation as
an attention shifting mechanism by simply zero-padding the input image in
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a way that offsets the centre of the resulting padded image by the desired
amount equal to the distance travelled by the ‘fovea’ during the saccadic
movement.

To demonstrate the flexibility of this method, we implemented a pipeline
emulating all retinal layers (see §6.1). In this model, the input to excitatory
layers (receptors, bipolar cells and ganglion cells) is modulated by feedback
from inhibitory layers (horizontal and amacrine cells). Cells in the excitat-
ory layers have eccentricity-dependent RFs (smaller towards the centre of
the image and gradually growing in size towards the edges). A local spatial
normalisation map is implemented using the horizontal layer, whereas the
bipolar layer implements a temporal filter as well as the split into separate
ON and OFF pathways. The temporal filter was implemented as an ex-
ponential running mean which was updated iteratively as follows at every
frame:

µt+1 = αx+ (1− α)µt, (9)

where µt is the mean at time step t, α is the ‘forgetting rate’ that de-
termines how much of the preceding input is remembered, and x is the input
frame. The mean is computed in this way for each pixel.

The ganglion layer preserves the separation of these two paths and im-
plements two types of ganglion cells with ON-centre / OFF-surround and
OFF-centre / ON-surround RFs, respectively. For the sake of brevity, we
have omitted the demonstration of saccadic movements, which can be used
for inducing events from an otherwise static input. The parameters for
this model are given in Table 4. We use part of the Perseverance land-
ing sequence as recorded with the rover’s onboard camera minutes before
touchdown [111].

Several interesting observations can be made about the results in Fig. 9.
First, despite the simplicity of the simulated retina, it can clearly perform
certain types of preprocessing, such as local brightness normalisation at
the horizontal layer, edge extraction (e.g., at the bipolar layer) and event
generation at the ganglion layer. It is also noteworthy that ON/OFF and
OFF/ON ganglion cells highlight the two sides (brighter and darker) of
edges in the visual scene. It is noteworthy that the RF organisation in
this case successfully suppresses noise in the output of the ganglion layer.
This demonstration of effects observable in biological retinas is encouraging
as we are working towards implementing more sophisticated processing of
the incoming visual information, such as optical flow reconstruction and
detection of approaching motion for applications such as obstacle avoidance
and landing.

The retinal simulation code is part of a library named pyrception, which
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Table 4: Parameters for the retinomorphic model in 6.3.1

Cell type Parameter Value

Receptors Input type Grayscale

Horizontal, bi-
polar, amacrine,
ganglion

RF size distribution Gaussian1

RF size distribution: mean (H/2,W/2)2

RF size distribution: SD (H/3,W/3)

RF type Proportional3

Horizontal, bi-
polar, amacrine

Min. / max. RF size 1× 1 / 4× 4

Ganglion
Min. / max. RF size (centre) 1× 1 / 4× 4

Min. / max. RF size (surround) 4× 4 / 9× 9

Bipolar cells α4 0.95

Ganglion cells Threshold5 15

1 For all cell types except horizontal cells, the Gaussian was inverted, mean-
ing that the RF size increased with distance from the centre. For horizontal
cells, the RF size was larger at the centre and decreased towards the edges.
This is consistent with the fact that horizontal cells are concentrated around
the foveal region [81], where they facilitate the mechanism of adaptation to
the local brightness level. A larger RF size for horizontal cells in the foveal
region leads to a sharper image in the fovea, consistent with observations
from biology.
2 In this table, H and W denote the height and width of the input image,
respectively.
3 Proportional here means that the value of each element of the kernel is the
inverse of the kernel size (e.g., 1/9 for a 3× 3 kernel).
4 α is the ‘forgetting rate’ of the exponential running average used as a
temporal filter in the bipolar layer.
5 The threshold indicates the difference between the intensity at the centre
vs. the surround of the receptive field. An event is produced if this threshold
is crossed.
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Figure 9: A snapshot of the state of each layer and the combination of ON/OFF and
OFF/ON events. (a) Raw input (converted to grayscale). (b) Simulated horizontal cell
layer computing the local mean illumination. (c) The raw signal with the mean illumin-
ation from (b) subtracted. (d) Temporal filter (implemented as a running average of the
normalised signal in (c). (e) ON and (f) OFF bipolar cells computing positive and negative
deviation from the temporal mean, respectively (i.e., parts that are brighter and darker
than the mean). Ganglion cells with (g) ON/OFF and (h) OFF/ON centre/surround RFs.
In ON/OFF ganglion cells, the centre is driven by ON bipolar cells and the surround by
OFF bipolar cells, and vice versa for OFF/ON ganglion cells. A ganglion cell produces
a binary spike (event) when the difference between the centre and surround crosses a
predefined threshold (a model parameter). Finally, (i) shows the combined activity of
ON/OFF (blue) and OFF/ON (red) ganglion cells.
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in turn is part of the ACT open-source ecosystem 5. The ultimate goal of the
pyrception library is to provide convenient interfaces for converting input
from multiple sensory modalities (such as auditory and olfactory) into spike
trains, which can be used downstream for spike-based multi-modal learning
tasks.

6.4 Existing silicon retinas

The understanding that the retina deals with the inherent unreliability of
‘wetware’ by responding to relative intensity changes (rather than the abso-
lute magnitude) in the visual field [112] has been central to the development
of silicon analogues to the retina. One of the earliest circuits that modelled
the adaptive behaviour of retinal cells was a photoreceptor that mimicked
some homeostatic processes in the retina. Specifically, the receptor could
detect changes in illumination rather than the absolute illumination level
[113, 114]. The idea behind this circuit was inspired by the operation of re-
ceptors and bipolar cells (see §6.1). It employed a feedback mechanism that
compared the response to the changes in intensity to a filtered version of
the output of the receptor, with an added hysteretic element that provided
a ‘memory’ of recent illumination. Importantly, the circuitry emulated the
way that biological photoreceptors adapt to changes in light intensity on a
logarithmic rather than linear scale (a phenomenon known as Weber’s law).
In other words, if the output of the receptor is given as V ∝ log(I), then
the change in that response would be logarithmic as well (δV ∝ δI/I).

A prominent milestone along this line of research was the development
of a ‘silicon retina’ [115], where each photoreceptor could adapt to the local
light intensity through feedback from simulated horizontal cells and the ad-
apted signal was further amplified by silicon analogues of bipolar cells. The
silicon retina demonstrated how a globally connected matrix of elements can
still adapt to local fluctuations in light intensity, producing a familiar out-
put comparable to that of an actual biological retina. Ultimately, a circuit
was demonstrated that could model the behaviour of all five types of retinal
cells, including ganglion cells [116].

Subsequently, the Address Event Representation (AER) [117, 118] was
developed with a slightly different objective, namely efficient communica-
tion of a continuous signal in the form of multiplexed spike trains. The
generic nature of AER was used to demonstrate how a circuit could perform
spatial convolution (using, for instance, Gabor filters), allowing for feature
extraction and tracking with high temporal resolution.

5https://gitlab.com/cantordust/pyrception
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6.4.1 The dynamic vision sensor (DVS)

One of the main problems with the early circuits described above was that
they were built primarily as proof-of-concept devices – they were never
meant to be used as actual camera sensors. This changed with the de-
velopment of the dynamic vision sensor (DVS) [15, 16].

In many ways, DVS is a simplification on the original approach of mod-
elling the retina holistically (i.e., all the layers separately). For instance,
pixels in the DVS camera are entirely independent of all other pixels, allow-
ing for a completely asynchronous operation that employs AER to output
events (x and y coordinates, timestamp t and polarity p). DVS pixels are
relatively simple and implement the entire pipeline from receptors through
bipolar cells and ganglion cells within a single circuit. The main principle
of event generation and adaptation remains similar to that in earlier re-
search: each pixel detects changes in the brightness (log intensity) in either
positive or negative direction relative to a baseline. Once the derivative of
the logarithmic-intensity crosses a fixed threshold Θ, an event is produced
and the brightness value in correspondence of the threshold plus some delay
time set as the new baseline. In this way, rapid changes in brightness result
in a large number of events, whereas slow fluctuations produce few events.
Importantly, since the baseline is reset independently for each pixel to the
level of the threshold each time the respective pixel produces an event, the
sensor as a whole has an exceedingly large dynamic range – on the order of
140dB. This means that stark contrast does not saturate the sensor because
the response of a pixel on the dark side of an edge does not depend on the
response on the bright side of the same edge; it only depends on the relative
changes in brightness (Fig. 10).

The DAVIS sensor [15] adds active pixel sensor circuitry to the core DVS
logic in order to be able to keep information about the absolute brightness
in the scene while retaining the advantages of the DVS sensor, such as high
dynamic range, low latency and sparse activity. This allows a conventional
frame-based readout to be obtained simultaneously with the fast asynchron-
ous event-based output of the DVS sensor.

DVS pixels also show a characteristic junction leakage current, which
depends strongly on the temperature [119]. This leakage current is the
source of sporadic (noisy) ON events, with the noise level becoming more
prominent at high temperature and in dark environments.

The DVS pixel circuits enabled event-based sensors to bridge the gap
between proof of concept and usability, leading to several commercial im-
plementations (e.g., by Inivation6 and Prophesee7).

There are also some notable points where the DVS departs from the
operating principles of the mammalian retina. For instance, the DVS does

6https://inivation.com/
7https://www.prophesee.ai/
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Figure 10: Operating principle of a DVS pixel. Every time the brightness of the area of
the visual scene covered by the pixel increases (decreases) by a fixed amount (quantified
by the threshold Θ), the pixel generates an ON (OFF) event. The AER representation
is commonly used for encoding the output of an event sensor, whereby an AER event
consists of a timestamp, the x and y coordinates of the pixel that generated the event and
the polarity of the output (+1 for ON and −1 for OFF events).
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not fully preserve the ON/OFF pathway separation since a single pixel can
produce both ON and OFF events (whereas in biological systems these path-
ways are in fact kept separate all the way to the visual cortex [82]). Also, due
to the lack of cross-talk between pixels, it is impossible for DVS cameras to
implement the centre/surround RFs of bipolar and ganglion cells (although
recent research aimed to introduce RFs [120], mainly with the goal of sup-
pressing noise). Other features of the retina and the eye in general, such
as microsaccades [121] and foveation [122], have also been attracting the
attention of event-based vision researchers in recent years. In parallel, there
are also efforts to develop software that can emulate, simulate or otherwise
complement the capabilities offered by hardware event-based sensors. For
instance, the development of the video2events (v2e) framework [123] and
the ESIM library [124] was driven by the objective to harness existing con-
ventional video datasets for event-based vision research.

6.5 Why in space?

In 2021, he DAVIS240 sensor became the first neuromorphic device to be
launched in space and is, at the time of writing, also onboard the ISS
launched as part of the ISS resupply payload in the Falcon Neuro Project
[125]. This shows the great interest aroused by neuromorphic sensing on the
aerospace experts. The understanding and quantification of the advantages
of event based cameras in the context of space missions is, though, only
at its beginning [126, 127, 128, 129, 130]. Besides the discussed benefits
of pursuing a neuromorphic approach whenever low-resource requirements
are driving the design of a mission, additional advantages over a conven-
tial camera could derive from its higher dynamic range, achieving superior
performance in high-contrast scenes as well as allowing a relaxation on the
constrains imposed by light entering the field of view of the sensor. The high
temporal resolution and compression qualities of an event sensor are also of
interest, as well as its recently proved resilience to different types of radiation
(such as wide-spectrum neutrons) that are often present in space operating
environments [131]. Promising scenarios where event based cameras could
make a difference in a space context are landing [126, 127], pose estimation
[129], planetary surface mapping, astronomy [128, 130], monitoring of spe-
cific events (e.g., explosive events, pebble dynamics around asteroids, etc.).
In all these cases it can be argued that the neuromorphic nature of the cam-
era (combining high power efficiency and other beneficial properties), could
bring advantages with respect to conventional systems, especially when a
neuromorphic approach also used from the algorithmic side to tackle the
interpretation of the produced events [126]. However, an open question that
remains in this field is the quantification of the domain gap introduced by
the use of synthetic data produced by video-to-event converters (a classical
example being v2e [123]). A recent work [129] addresses this issue by pro-
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posing and testing an algorithm (trained on a synthetic dataset) on event
streams created by a realistic mock-up experiment performed in a lab.

6.6 Landing with events

The ACT has recently demonstrated the suitability of event-based vision for
autonomous planetary landing operations by inferring and processing optical
flow measurements to predict time-to-contact (TTC) and divergence. TTC
is defined as:

TTC = − z

vz
(10)

where z is the altitude of the spacecraft with respect to the planetary surface
and vz its vertical velocity, so that a descending spacecraft will always satisfy
z > 0 and vz < 0. Previous work has already demonstrated the suitability
of TTC feedback for controlling a spacecraft during flight operations and
landing scenarios by using visual information from traditional frame-based
sensors onboard micro air vehicles [132, 133]. Our recent studies have shown
that event data could also be effective for reconstructing on-board TTC,
therefore bridging the gap from on-board event data streams to real-time
control [126, 127].

In these studies, event streams representative of relevant ventral landing
scenarios were constructed synthetically by converting sequences of frames
similar to those provided by traditional frame-based sensors to events. The
PANGU (Planet and Asteroid Natural Scene Simulation Utility)[134] soft-
ware was used to generate proxy models of the Moon surface and render
frames representative of the output of onboard vision instrumentation. From
the generated synthetic events, TTC was estimated by identifying features
in the event stream corresponding to static structures in the planetary body
(such as craters and boulders) and computing their rate of perceived ex-
pansion or optical flow divergence. The reconstructed TTC from the event
stream was fed back into a closed-loop control system to simulate real-time
autonomous ventral landing by enforcing constantly decreasing TTC. Sim-
ulations were performed for different lunar terrains characterized by diverse
crater and boulder distributions. Results showcased the suitability of the
solution as a proof of concept for real-time onboard processing of events in
planetary landing scenarios, where the main areas with room for improve-
ment that could benefit from future research are the inference of divergence
and the inclusion of more accurate noise models for event modelling based
on known properties of DVS hardware.[126]

In recent work, the divergence estimation procedure was further im-
proved by using a contrast maximisation [135, 136] formulation for event-
based divergence estimation, demonstrating its applicability on both syn-
thetic and real event datasets.[127] Spacecraft position and velocity vectors
were obtained for several planetary ventral landing profiles computed via
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indirect optimisation methods. A UR5 robotic arm with a Prophesee GEN
4 event sensor was employed to replicate these ventral trajectories using
2D and 3D printed planetary surfaces. Some of the generated trajectories
were used to render 3D landing reconstructions in PANGU, which were then
passed through the v2e [123] pipeline to generate synthetic event streams.
A mathematical formulation for the event-based radial flow was proposed,
and a GPU-accelerated optimisation procedure was used to maximise the
contrast of the resulting flow-compensated event images and estimate the di-
vergence of event batches. Comparisons to other state-of-the-art divergence
estimation methods showcased the accuracy and stability of the proposed
procedure across a wide variety of event streams, with competitive run times
achieved owing to the GPU-accelerated implementation.

6.7 From events to egomotion

Events as produced by the DVS or some other device based on retinomorphic
models contain information on the perceived scene motion as projected in
the camera plane. But what can be learned about the spacecraft egomotion
(or pose) using only this information? It is conceivable that events can be
used for reconstructing the motion field, whereby the problem of motion field
interpretation has already been discussed in the literature [137]. A number of
researchers have commented on this issue, starting with the work by Longuet
Higgins [138], which addressed the question for the case of retinal vision, and
subsequent works that lay down the mathematical structure of the problem,
mapping it into a linear problem and thus marking it as “solved” [137]. More
recently, substantial work in the area of drones and robotic vision has been
produced based on these fundamental results established in the 80s and 90s.

Let us consider the familiar equations [137, 138]:{
u = (vxc + xvzc)h(x, y) + q + ry − pxy + qx2

v = (vyc + yvzc)h(x, y) + rx− p− py2 + qxy

where u, v are the velocities of the feature in x, y on the camera plane,
p, q, r the angular velocity components of the camera, vxc, vyc, vzc the ve-
locity of the camera center of mass and h(x, y) the inverse of the depth
map. From these equations, if h, vxc, vyc, vzc constitutes a solution, so does
h
k , kvxc, kvyc, kvzc; it is thus impossible to invert the motion field to absolute
values of all motion parameters, as only relative depth can be distinguished.
Approximating the surface as an infinite plane, one can show that necessar-
ily:

h(x, y) = αx+ βy + γ

where H2(α2 +β2 +γ2) = 1, having denoted the spacecraft altitude with H.
Let us analyse the structure of the resulting equations. If we assume to know
the motion field ui, vi, i = 1..n at n different points, we can write a system
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Figure 11: Camera geometry during planetary landing. The three reference systems,
namely planet (i), camera (c) and spacecraft (sc), are shown as well as the camera plane
projection of a generic surface feature assumed to be stationary.

of 2n equations in the unknowns vxc, vyc, vzc, p, q, r, α, β, γ. As before, only
relative depth can be estimated, hence one can set H = 1 and consider
γ2 = 1−α2−β2 to conclude that in theory n = 4 points of the motion field
are necessary and sufficient to fully determine the spacecraft egomotion in
relative terms to the altitude H. This conclusion does not consider the effect
of measurement noise on the resulting estimates, a problem that is highly
dependent on the sensor used (i.e., the quality of the events produced and
their translation into a motion field). To conclude, it is worth mentioning
the recent work from Jawaid et al.[129] on pose estimation from events. In
a docking scenario (both simulated and reproduced in a lab mockup), the
approach proposed in that work is able to determine from event data also
the absolute values of mutual distances. This is not in contradiction to
what is claimed above, as the algorithm is not exploiting depth cues from a
reconstructed motion field but rather cues learned directly from a predefined
dataset of known poses where the absolute dimensions appear explicitly.
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