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Abstract—Automotive embedded algorithms have very high
constraints in terms of latency, accuracy and power consumption.
In this work, we propose to train spiking neural networks (SNNs)
directly on data coming from event cameras to design fast
and efficient automotive embedded applications. Indeed, SNNs
are more biologically realistic neural networks where neurons
communicate using discrete and asynchronous spikes, a naturally
energy-efficient and hardware friendly operating mode. Event
data, which are binary and sparse in space and time, are therefore
the ideal input for spiking neural networks. But to date, their
performance was insufficient for automotive real-world problems,
such as detecting complex objects in an uncontrolled environ-
ment. To address this issue, we took advantage of the latest
advancements in matter of spike backpropagation - surrogate
gradient learning, parametric LIF, SpikingJelly framework -
and of our new voxel cube event encoding to train 4 different
SNNs based on popular deep learning networks: SqueezeNet,
VGG, MobileNet, and DenseNet. As a result, we managed to
increase the size and the complexity of SNNs usually considered
in the literature. In this paper, we conducted experiments on
two automotive event datasets, establishing new state-of-the-art
classification results for spiking neural networks. Based on these
results, we combined our SNNs with SSD to propose the first
spiking neural networks capable of performing object detection
on the complex GEN1 Automotive Detection event dataset.

Index Terms—spiking neural networks, event cameras, object
detection, SSD

I. INTRODUCTION

Event cameras have several interesting features for embed-
ded automotive applications: very low latency, high dynamic
range and low power consumption. They are composed of
independent photoreceptor pixels that detect a change in
brightness. They output binary events, a type of information
that contains the position, the precise time and polarity of
every brightness change. But since the data they produce
is asynchronous and sparse by nature, it is difficult to use
classical neural networks that were designed for processing
frames.

In spiking neural networks, the information is transmitted
between neurons by discrete binary spikes, making the whole
network asynchronous and sparse by nature. They are therefore
particularly adapted to the processing of event data. Due to
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the nature of their operations, they are also hardware friendly:
previous works showed that on specialized hardware, spiking
neural networks consume 50% less energy than traditional
neural networks while maintaining the same accuracy [1], and
the recent release of new neuromorphic hardware such as Intel
Loihi 2 [2] could further improve these results.

Using the latest advancements in matter of spike backprop-
agation, we train state-of-the-art spiking neural networks to
process real-world automotive event data and obtained good
performance on classification and object detection tasks.

The main contributions of this work can be summarized as
follows:

1) We present a novel approach to encode event data called
voxel cube that preserves their binarity and temporal
information while keeping a low number of timesteps.

2) We propose a new challenging dataset for classification
on automotive event data: GEN1 Automotive Classifi-
cation, generated using the Prophesee object detection
dataset of the same name.

3) We train four different spiking neural networks for
classification tasks based on popular neural network
architectures (SqueezeNet, VGG, MobileNet, DenseNet)
and evaluate them on two automotive event datasets,
setting new state-of-the-art results for spiking neural
networks.

4) We present spiking neural networks for object detection
composed of a spiking backbone and SSD bounding
box regression heads that achieve qualitative results
on the real-world GEN1 Automotive Detection event
dataset. To the best of our knowledge, it constitutes the
first spiking neural networks capable of doing object
detection on real-world event dataset.

Our code is available upon request and will be available
online in the future.

II. RELATED WORK

A. Learning on event data
With its microsecond temporal resolution, event data cannot

be directly processed by modern deep learning models. Over
the years, several preprocessing methods have emerged to
convert events into a dense representation that can be used
in Deep Neural Networks (DNNs).
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The simplest preprocessing method is to accumulate the
events pixel-wise over a given period of time, creating an
histogram [3]. The result can be viewed as an event frame,
with no time dimension and two output channels containing
the event count for each polarity. Time surfaces [4], where the
timestamp of the last received event is stored in each pixel,
represent an alternative to histograms that better preserve the
temporal information inside an event frame. A recent prepro-
cessing method called ”event cube” [5] has been proposed
to combine the simplicity of histograms with the temporal
information of time surfaces. In event cubes, a given period
of time is split in n micro time bins, and each pixel stores not
the event count but the event temporal distance from the center
of the neighboring micro time bins. The temporal information
is thus contained in the channel dimension, of size 2 × n.

The simplest way to retain the temporal information is
to represent events as a voxel grid [6], where each voxel
represents a pixel and a time interval. Although it requires
more memory and more computation, this is the preferred
representation for spiking neural networks as both the data
and the network operate on a fixed number of timesteps. The
accumulation of events on the time interval is usually a sum,
as in [7], but a binary accumulation as in [8] has the advantage
of interpreting events as binary spikes, and therefore benefit
from the spiking neural networks energy gains on specialized
hardware.

This paper introduces a novel representation called ”voxel
cube” that combines binary voxel grids with event cubes
to obtain a binary representation with a small number of
timesteps that maintains high temporal information.

B. Spiking Neural Networks

Spiking neural networks more closely mimic biological
neural networks by incorporating the concept of time into
their operating model. The neurons communicate using binary
spikes following a spiking neuron model e.g. the Leaky
Integrate-and-Fire (LIF) neuron [9], that is widely used due
to the simplicity of its operations. Neurons are connected by
scalar weights, modeling the synapses. As in DNNs, it is
possible to learn these weights, but since spikes are discrete
and thus non-differentiable, it is not possible to use the popular
backpropagation learning algorithm on SNNs. For static data,
SNNs can be created by converting to the spike domain a
trained DNN, using rate coding for example. However, the
results are inevitably inferior, making the direct learning of
SNNs more relevant especially for temporal data. To overcome
the lack of a backpropagation algorithm on spikes, several
learning rules have been proposed over the years.

Spike-timing-dependent plasticity (STDP) [10] is a bio-
plausible unsupervised learning rule where the weight connect-
ing two neurons is modified according to the delay between the
firing of the presynaptic and postsynaptic neurons. For a long
time, results obtained with STDP were not competitive with
supervised learning even on simple tasks, but recent progress
[11] could change the picture. However, STDP still has not

proved its effectiveness on real-word complex tasks such as
object detection.

Recently, supervised learning rules based on backpropaga-
tion have enabled the training of SNNs with excellent results.
Reference [12] presented SLAYER, an error backpropagation
method for SNNs capable of learning both synaptic weights
and axonal delays, allowing them to tackle bigger datasets
with deeper networks. Another approach introduced in [13]
is to train SNNs using surrogate gradient learning: during
the forward pass, an Heaviside step function generates spikes
and during the backward pass, the gradient of this non-
differentiable function is approximated using a surrogate gra-
dient, for example the gradient of a sigmoid function. This
work also demonstrated that SNNs are equivalent to RNNs,
enabling their learning with backpropagation through time in
popular deep learning frameworks.

Using this surrogate gradient learning rule, multiple
Pytorch-based frameworks for training SNNs have emerged,
such as Nengo [14] or SpikingJelly [15]. Thanks to their
automatic differentiation and strong GPU acceleration, these
new frameworks have led to the training of deeper spiking
neural networks achieving state-of-the-art results on classifi-
cation problems [7], [16]. It also becomes possible to make
the neuron parameters learnable. For example, reference [7]
introduced the Parametric LIF (PLIF) neuron model, where
the learnable time constants make the network less sensitive
to initial values and can speed up learning.

C. Object Detection on event data

The task of object detection is to determine where objects
are located in a given image (object localization) and which
category each object belongs to (object recognition). DNNs
have brought significant performance gains over handcrafted
methods by learning semantic, high-level and deeper features.
For embedded real-time applications, one-step object detection
frameworks such as SingleShot MultiBox Detector (SSD)
[17] have emerged. They map image pixels to bounding box
coordinates and class probabilities, modeling object detection
as a regression or classification task.

Object detection on event data, which is sparse and contains
high temporal information, is still a challenge. The simplest
approach is to integrate the events as a single frame, and to
train a deep neural network without temporal information. This
is used for example in the YOLE network [18]. With an event
preprocessing method that retains temporal information, it is
possible to design more complex object detection networks.
In [19] authors propose Matrix-LSTM a network based on
voxel grids representations and composed of a matrix of
LSTM cells that sequentially processes event features. These
features are then fed to a pretrained object detection model. A
more ambitious approach is to train an unique neural network
directly on voxel grids, using the temporal information to
output the bounding boxes and the classes. Such an approach is
presented in [20]: Recurrent Event-camera Detector (RED) is
a recurrent neural network composed of feed-forward convolu-
tional layers followed by ConvLSTM. While the convolutional



layers extract low-level features from events, the ConvLSTM
layers extract high-level spatio-temporal patterns thanks to
their memory. The output is then fed to SSD bounding box
regression heads.

This demonstrates that learning to detect objects from events
is possible, but it still requires deep neural networks that do
not take full advantage of the properties of event-data and that
would be difficult to embed in power constrained environment.
Hybrid-SNN [21] proposes a partial solution by presenting
an hybrid neural network composed of a SNN backbone for
efficient event-based feature extraction, and an ANN head to
solve object detection tasks. To the best of our knowledge,
the work presented in our paper is the first complete spiking
neural network capable of doing object detection.

III. METHOD

A. Voxel cubes

Most event sensors output events with microsecond tempo-
ral resolution, but in order to use them in modern deep learning
models, we need to convert them into a dense representation.
In our case, we accumulate events over time windows of
∆t seconds. The resulting representation is called a voxel
grid, where each voxel represent a pixel and a time interval.
Indeed, a sample lasting d seconds is now divided in d

∆t = T
timesteps. Usually, the events are stored in the form of a 4D
CTHW tensor, with C the number of channels, T the number
of timesteps, H and W the height and width of the data.

We can then use spiking neural networks directly on event
data, they will therefore operate on T timesteps. But in order
to keep the high temporal resolution of event data, we need to
have a large number of timesteps T , which increases linearly
the number of computations of the SNN and thus the inference
time and the energy consumed.

Inspired by event cubes [5], we propose a novel event
preprocessing called voxel cubes. In voxel cubes, each time
window ∆t is subdivided in n micro time bins lasting therefore
∆t
n seconds. Events belonging to a micro time bin will be

stored in the channels dimension, providing finer temporal
information to the first layer of the network. The number of
channels C is therefore equals to 2 × n, each polarity being
stored in n channels. Contrary to event cubes, each event
contributes only to the time bin where it falls into, and the
accumulation of multiple events in the same micro time bin
is binary. This loss of information is justified by the need to
keep binary inputs, in order to leverage the energy efficiency
of spiking neural networks running on specialized hardware.
An illustration of this encoding is proposed in Fig. 1.

By transferring temporal information to the channel dimen-
sion, voxel cubes allow us to reduce the number of timesteps
T without loosing temporal precision compared to voxel grids,
as we show in section V-A.

B. Spiking Neural Networks models

Inspired by popular deep learning convolutional neural
networks (CNNs), we designed 4 different spiking neural
networks using only strided convolutions, max pooling, batch

Fig. 1. Voxel cube encoding. For a given number of timesteps, voxel cubes
better preserve the temporal information of events by exploiting the channel
dimension. Here, the voxel cube illustrated uses 2 micro time bins.

normalization and PLIF neurons. Convolutions and max pool-
ing have been used extensively with SNNs [8] [22]. Since
batch normalization layers can be merged with a preceding or
subsequent convolution layer at inference, it is possible to use
them to train SNNs as long as they are placed before the PLIF
neurons. We explore their importance in section V-B.

In CNNs, the final layers used for classification need to be
adapted to be compatible with spikes. To this end, we propose
a spiking classifier simply composed of a layer of batch
normalization, a 1 × 1 convolution outputting num classes
channels and PLIF neurons. By using a 1D convolution, this
classifier is able to process feature maps of any size without
requiring e.g. a layer of average pooling, which would be
incompatible with spikes operations. The final predictions are
obtained by summing all output spikes first in the spatial
dimension, then in the time dimension.

We propose spiking variants of VGG, SqueezeNet,
MobileNet and DenseNet by replacing their ReLU activation
functions by PLIF neurons. All spiking neural networks use
the spiking classifier described above in lieu of their own
classifier.

1) Spiking VGG: Introduced in [23], VGG is a
convolutional neural network composed of up to 19
convolutional layers followed by 3 fully-connected layers.
Our Spiking VGG replaced the final classifier but kept the
same architecture, with the addition of batch normalization
before each spiking convolutional layer.

2) Spiking SqueezeNet: SqueezeNet [24] is a small CNN
that uses Fire modules: squeeze layers (1 × 1 convolutions)
before expand layers composed of a mix of 1 × 1 and 3 × 3
convolutions. This results in a low number of parameters, an
appealing property for embedded applications. We replaced
all convolutional layers by their spiking equivalent to obtain
our Spiking SqueezeNets, along the addition of batch
normalization.

3) Spiking MobileNet: MobileNet [25] is a model designed
to be used in mobile applications that use depthwise separable
convolutions, requiring less parameters and computations than
normal convolutions. For our Spiking MobileNet, we dropped



the activation function between the depthwise and pointwise
convolutions, and moved all batch normalization layers before
the convolutional layers. Removing the activation function
makes our network non-spike as the inputs of the pointwise
convolution are not spikes anymore. However, it can be
shown that a depthwise separable convolution is equivalent
to a normal convolution with specific weights. Thus, we used
depthwise separable convolutions in the training of our spiking
MobileNets as it provided better results (see section V-C), and
we return to a full-compatible SNN at inference by replacing
them by their equivalent convolutions. Our Spiking MobileNet
contains only one of the five identical depthwise separable
layers near the end of the network. We have varied the number
of filters of the first layer to obtain networks of different sizes.

4) Spiking DenseNet: To promote gradient propagation,
ResNets use element-wise addition, an operation difficult
to operate in the spike domain. Reference [16] proposed
Spiking ResNets with different residual connections, but the
one based on an AND accumulation - in our opinion the
only one compatible with an implementation on specialized
hardware - produces unsatisfactory results. DenseNet [26] is
an architecture that promotes gradient propagation by using
channel-wise concatenations, which is an operation preserving
the spike representation. We replaced the ReLU activations
by PLIF neurons to obtain our Spiking DenseNet. We have
varied the depth and growth rate to obtain different versions
of Spiking DenseNet.

C. Object Detection with Spiking Neural Networks

The SSD object detection framework [17] consists of a
backbone and multiple predictor heads. The heads take as
inputs feature maps generated by the backbone at different
scales to predict bounding boxes and their associated classes.
To obtain a complete spiking neural network capable of doing
object detection, we replaced the CNN backbone by the SNN
backbones designed for classification, and we used spiking
convolutions instead of normal convolutions in the extra layers.
Therefore, the feature maps fed to the SSD heads are spikes,
and since the heads consist of only one convolution the whole
network is indeed a SNN.

The spiking neural network operates on T timesteps, there-
fore the final bounding boxes and classes predicted by the
network are obtained by doing a sum over the T timesteps.
The output of the network still requires a post-processing to
filter predictions, but we assume that this step would be done
on conventional hardware outside the spiking neural network
scope.

One-shot object detectors such as SSD struggles with the
class imbalance problem due to the overwhelming number
of predictions classified as background. Reference [27] in-
troduced focal loss, a modulation term applied to the cross-
entropy loss function that tremendously helps the learning of
one-shot object detectors. Thus, we trained our spiking neural
network with focal loss, as the hard negative mining originally
used by SSD did not achieved satisfying performances.

As in the original SSD architecture, we used three extra
blocks of convolutions to generate smaller feature maps after
our spiking backbone. Each block consists of a 1 × 1 spiking
convolution to reduce the number of channels, followed by a
3 × 3 spiking convolution with a stride of 2. Once again, we
used batch normalization layers before each convolution.

The anchors used by our network were generated with a
minimum ratio of 0.5 and a maximum ratio of 0.8, accounting
for the smaller objects present in the object detection dataset
we studied.

The architecture of our spiking DenseNet + SSD is shown
in Fig. 2. Increasingly smaller feature maps generated by the
DenseNet backbone are fed to the SSD heads, and the 3 extra
blocks further reduce features maps to a final size of 2 × 1.
Similar architectures are used for our spiking MobileNet +
SSD and VGG + SSD.

IV. EXPERIMENTS

A. Datasets

We evaluated our spiking neural networks on two automo-
tive classification datasets: Prophesee NCARS and a new event
dataset we called Prophesee GEN1 Automotive Classification,
generated from the object detection dataset Prophesee GEN1.
We then evaluated our object detection spiking networks
on this specific dataset, the Prophesee GEN1 Automotive
Detection dataset.

1) Prophesee NCARS dataset: The Prophesee NCARS
dataset [28] is a classification composed of 24k samples
of length 100ms captured with a Prophesee GEN1 event
camera mounted behind the windshield of a moving car. The
samples represent either a car or background. Samples have
variable size as they are cropped from recordings of resolution
304 × 240 pixels.

2) Prophesee GEN1 Detection dataset: Composed of 39
hours of recording, the Prophesee GEN1 Automotive Detec-
tion dataset [29] is the largest event-based dataset to date.
Recorded with a Prophesee GEN1 sensor mounted on a car
dashboard, it contains over 255k manually annotated bounding
boxes of two classes: cars and pedestrians.

3) Prophesee GEN1 Classification dataset: We generated
a classification dataset from the Prophesee GEN1 Detection
dataset by cropping each bounding box (car or pedestrian)
form individual samples. As it is the case for NCARS, each
sample represents 100ms of events preceding the annotated
bounding box. The main difference between this dataset and
NCARS lies in the presence of a pedestrian class. Indeed, we
believe that the features learned by a network are more relevant
if it is trained to classify two different classes rather than one
class vs. background.

To avoid imbalance in the number of samples for each
class, we rebalanced the training set: we undersampled the cars
and oversampled the pedestrians by doing horizontal flip data
augmentation. The code used to generate this classification
dataset will be available online.



Fig. 2. Our spiking DenseNet + SSD architecture for object detection.

B. Implementation details

1) Voxel Cubes : For classification, we used samples of
100ms encoded as binary voxel cubes. For object detection,
we chose to train our network only on the 100ms preceding
annotated bounding boxes. Thus, our SNN make predictions
based solely on these 100ms, the potentials being reset after
each sample. For both tasks, the samples were encoded as
binary voxel cubes of 5 timesteps and 2 micro time bins, as
it represented the best compromise between performance and
number of operations.

2) Hyperparameters: All classification models were trained
using the AdamW optimizer with a 1e−4 weight decay and
an initial learning rate of 5e−3, except for the VGG models
that used an initial learning rate of 5e−4. The object detection
models used an initial learning rate of 1e−3. The models were
trained with a batch size of 64 over 10 epochs for classification
and 200 epochs for object detection, using a cosine annealing
learning rate scheduler that gradually decrease the learning
rate towards 0. All convolutions were initialized using the
Kaiming uniform method, and all batch normalization layers
were initialized with a weight of 1 and a bias of 0. The
Parametric LIF neurons all had an initial membrane time
constant τ of 2, a membrane threshold of 1 and the ATan
function as the surrogate function. Norm of the gradient values
were clipped to a maximum of 1 to avoid exploding gradients.
All presented results represent the best ones among 5 runs.

All trainings were done with the SpikingJelly framework
[15] using 16-bit automatic mixed precision, running on a 48-
GB NVidia RTX A6000 and a 104-threads Intel Xeon Gold
6230R.

3) Performance metrics: For classification, we measure the
performance by using an accuracy metric. For object detection,
we report COCO mAP [30], the mean Average Precision over
10 IoU ([.50:.05:.95]), as it is widely used for evaluating object
detection models.

But assessing the performance of spiking neural networks
is not limited to that, as multiple others features are needed to
take advantage of their benefits when embedded in specialized
hardware. For all our results we report the following metrics:

• Number of parameters: embedded systems have high
constraints in term of memory, therefore it is important
to design networks with a low number of parameters.

• ACCs: spiking neural networks do not require multi-
plicative operations, enabling substantial energy savings
on specialized hardware. Thus, we chose to report the

TABLE I
COMPARISON WITH STATE-OF-THE-ART MODELS ON PROPHESEE NCARS

Methods Representation Network NCARS acc
HATS [28] TimeSurface N/A 0.902
Gabor-SNN [28] Spike SNN 0.789
HybridSNN [21] VoxelGrid SNN 0.77
HybridSNN [21] VoxelGrid SNN-CNN 0.906
YOLE [18] VoxelGrid CNN 0.927
Asynet [31] VoxelGrid CNN 0.944
EvS-S [32] Graph GNN 0.931

SqueezeNet 1.1 VoxelCube SNN 0.845
VGG-11 VoxelCube SNN 0.924
MobileNet-64 VoxelCube SNN 0.917
DenseNet169-16 VoxelCube SNN 0.904

number of operations of our SNNs by using the number
of accumulations operations (ACCs), to accentuate the
potential energy savings. Indeed, all spiking convolutions
operations amount to ACCs, and each PLIF neuron only
requires 1 ACC per timestep to update their potential. We
did not count the ACCs in the batch normalization layers
as they can be fused with the convolutional layers.

• Sparsity: finally, we measured the number of spikes
emitted after each activation layer to represent the global
sparsity of the network compared to an fully dense
equivalent DNN. Indeed, processing events with SNNs
preserves the data sparsity. On specialized hardware,
computations are only performed when there are spikes,
therefore an highly sparse network would consume less
power than its dense counterpart. The sparsity is obtained
by averaging the number of spikes over the whole test set.

C. Automotive Object Classification

For both classification datasets, the samples were resized to
64×64 pixels using nearest-neighbor interpolation to keep the
input events binary.

We present the best accuracies obtained by our SNNs on
the Prophesee NCARS dataset compared with other state-of-
the-art models in Table I. All of our models beat previous
results for spiking neural networks and compete with the best
neural networks in the literature. The spiking SqueezeNet, our
smallest SNN, struggles to reach over 80% test accuracy while
spiking DenseNets, MobileNets and VGG are all capable to
exceed 90% test accuracy on NCARS.



TABLE II
COMPARISON BETWEEN OUR SPIKING MODELS ON AUTOMOTIVE CLASSIFICATION

Models #Params ACCs/ts
NCARS GEN1 Classification

Accuracy ↑ Sparsity ↓ Accuracy ↑ Sparsity ↓
SqueezeNet 1.0 0.74M 0.05G 0.731 31.26% 0.627 6.65%
SqueezeNet 1.1 0.72M 0.02G 0.846 25.13% 0.674 6.79%

VGG-11 9.23M 0.61G 0.924 12.04% 0.969 14.69%
VGG-13 9.41M 0.92G 0.910 14.53% 0.970 19.03%
VGG-16 14.72M 1.26G 0.905 14.91% 0.977 18.79%

MobileNet-16 1.18M 0.27G 0.842 17.57% 0.949 15.15%
MobileNet-32 7.41M 1.06G 0.902 18.53% 0.955 14.37%
MobileNet-64 18.81M 4.20G 0.917 17.14% 0.966 30.60%

DenseNet121-16 1.76M 1.01G 0.889 27.99% 0.970 20.31%
DenseNet169-16 3.16M 1.19G 0.893 30.12% 0.969 23.12%
DenseNet121-24 3.93M 2.25G 0.904 33.59% 0.975 27.26%
DenseNet169-24 7.05M 2.66G 0.879 34.02% 0.962 28.29%
DenseNet121-32 6.95M 3.98G 0.898 38.32% 0.966 29.46%
DenseNet169-32 12.48M 4.72G 0.825 37.48% 0.967 40.35%

Table II provides extensive results of all our spiking neural
networks on both automotive classification datasets. Spiking
SqueezeNet models, while having a very low number of
parameters and number of ACCs per timestep, are not compet-
itive with other architectures for the NCARS and the GEN1
classification datasets. Our spiking VGG models provide the
best accuracies for both datasets, while maintaining a relatively
low number of ACCs per timestep. But these architectures
have an high number of parameters, making it difficult to
embed them. Spiking MobileNets reach high accuracies but
require high numbers of parameters and ACCs per timestep,
penalized by the replacement of their depthwise seperable
convolutions by normal convolutions. However, they are the
only models for which the accuracy increases as the model
gets bigger. Finally, spiking DenseNets reach competitive
accuracies while requiring a low number of parameters and
a moderate amount of ACCs per timestep. Using the densely
connected layers of DenseNets, surrogate gradient method has
no trouble to learn across 100+ spiking layers. The accuracy
decreases however when the growth factor and the number of
layers are both high, but we believe that better results could
be achieved on these big networks with longer trainings.

For SNNs to be truly efficient, they require both low sparsity
and a low number of timesteps. All of our spiking neural
networks have a sparsity inferior to 40% of both datasets.
As these SNNs operate on 5 timesteps, this means that they
require at most twice the number of operations of an equivalent
dense ANN. The operations would however consume less
power on a specialized hardware, as they are simple ACCs.
These sparsity results could further be improved by adding
a regularization term to the loss, constraining the number of
spikes emitted, as it was done in [33].

D. Automotive Object Detection

For object detection models, we used as backbones the
best variants: VGG-11, MobileNet-64, DenseNet121-24. We

TABLE III
COMPARISON WITH STATE-OF-THE-ART MODELS ON PROPHESEE GEN1

Methods #Params ACCs/ts Sparsity ↓ mAP ↑
Asynet [31] 133M - - 0.15
MatrixLSTM [19] 65M - - 0.31
RED [20] 24M - - 0.40
VGG-11+SDD 12.64M 11.07G 22.22% 0.174
MobileNet-64+SSD 24.26M 4.34G 29.44% 0.147
DenseNet121-24+SSD 8.2M 2.33G 37.20% 0.189

evaluated our results on the Prophesee GEN1 Detection test
set after having filtered boxes with diagonal smaller than 30
pixels as it is done in [20]. The spiking backbones were pre-
trained on the NCARS dataset. Our results are presented in
Table III.

Our spiking models achieve competitive mAP with a small
number of parameters and ACCs per timestep. We reach
0.19 COCO mAP with our DenseNet121-24 + SSD model,
with only 8.2M parameters and 2.33G ACCs per timestep.
Our spiking models outperform a traditional neural network
with over 5 times more parameters. The three models show
relatively similar performance, proving that spiking backbones
are able to provide meaningful spike feature maps to do object
detection on real-world event data.

V. DISCUSSION

A. Influence of the number of timesteps and micro time bins

Spiking neural networks are recurrent neural network op-
erating on a fixed number of timesteps T . Encoding event
data in a representation that keep their temporal information
can thus benefit SNNs. In section IV-B1, we presented an
event data encoding called voxel cubes, that preserve the
temporal information of events while minimizing the number
of timesteps. Indeed, the number of computations performed



Fig. 3. Influence of the number of timesteps and micro time bins on NCARS

TABLE IV
INFLUENCE OF BATCH NORMALIZATION AND PLIF NEURONS WHEN

TRAINING SNNS ON NCARS.

Models
Accuracy ↑

Normal Post-BN No BN No PLIF
SqueezeNet 1.1 0.846 0.511 0.500 0.560
VGG-11 0.924 0.771 0.550 0.889
MobileNet-64 0.917 0.857 0.654 0.701
DenseNet121-24 0.904 0.839 0.611 0.836

by SNNs increases linearly with the number of timesteps, it
is thus important to keep it small.

Fig. 3 plots the NCAR accuracy of our SNNs on selected
combinations of number of timesteps and micro time bins. The
number of timesteps remains the most important parameter
for obtaining good accuracies with SNNs. Indeed, the best
results are almost always achieved with 10 timesteps, the
maximum value we tested. Results obtained with 1 timestep
are significantly worse, even with a high number of micro
time bins, proving if necessary that SNNs need to operate on
several timesteps to be performant. Increasing the number of
micro time bins do not always improve the results, even if
it seems to help when the number of timesteps is low. We
notice that our spiking SqueezeNet is unable to learn with 1
or 2 timesteps, indicating a strong dependence of this network
on the temporality of the data.

Undoubtedly, these results depend on the samples duration
and the data temporality. In our case, for our samples lasting
100ms, the best compromise between number of timesteps,
number of micro time bins and accuracy seems to be 5
timesteps and 2 micro time bins, which is the encoding format
we used for all models except SqueezeNet.

B. Influence of Batch Normalization and PLIF neurons

Batch Normalization layers seem to be vital to the training
of complex SNNs: as we can in Table IV, removing them
(while adding a bias term to the convolutions) makes our

TABLE V
INFLUENCE OF DEPTHWISE SEPARABLE CONVOLUTIONS WHEN TRAINING

SPIKING MOBILENETS ON NCARS

Models Acc (dw sp conv) Acc (normal conv)
MobileNet-16 0.842 0.906
MobileNet-32 0.902 0.898
MobileNet-64 0.917 0.807

networks significantly less performant or they do not learn
at all. More surprisingly, the placement of the batch normal-
ization layers seems to also play a part in the efficiency of
our networks, as placing batch normalization layers before the
convolutions produce better results than placing them after.
In DNNs, placing batch normalization layers before or after
convolutions do not make a significant difference, as both
placements provide benefits in training speed and convergence.

In our case, we believe that batch normalization layers
placed before convolutions are effective in SNNs because they
transform highly sparse feature maps of spikes into a dense
decimal representation. As a result, the weights learned by
convolutions are updated through backpropagation whether
they have received spikes or not. Without batch normalization,
only the weights receiving spikes would have been updated
meaningfully, leading to slower convergence.

We restate that batch normalization can be used when train-
ing of SNNs because their parameters can be fused with the
parameters of the subsequent convolutions. In light of this, we
believe our findings on the placement of batch normalization
layers in convolutional SNNs can make a difference in the
training of larger and more complex SNNs.

On the other hand, PLIF neurons introduced in [7] also
help during the training of our large spiking neural networks.
Replacing them with simple LIF neurons (with a time constant
τ of 2) leads to poorer accuracies for all networks. Their pres-
ence is not as important as batch normalization layers but the
SNNs seem to benefit from learning different time constants
for each layer. It also reduces the number of hyperparameters
to be tuned, so we can only encourage their use for the training
of SNNs on event data.

C. Influence of depthwise separable convolutions

We used depthwise separable convolutions during the train-
ing of our spiking MobileNets for two reasons: the smaller
number of parameters made the trainings faster and the larger
networks were able attain better accuracies. As we can see in
Table V, the 32 and 64 input channels variants of spiking Mo-
bileNets using depthwise separable convolutions reach higher
accuracies than their normal convolution counterparts.

We presume that the higher number of parameters induced
by the normal convolutions makes the training of the spiking
neural networks with surrogate gradient more difficult. As
it is the case for the spiking VGGs, the accuracy actually
drop when adding parameters to the normal convolutions
MobileNets, while it increases for the MobileNets trained with
depthwise seperable convolutions.



However, the smaller variant seems to benefit from the
added parameters as the accuracy is 5% higher with normal
convolutions than with depthwise separable convolutions. We
therefore recommend to use depthwise separable convolutions
in SNNs only as a second resort, when the accuracy achieved
with normal convolutions decreases as the networks get larger.

VI. CONCLUSION AND FUTURE WORKS

We designed trained four different spiking neural networks
models based on SqueezeNet, VGG, MobileNet and DenseNet,
setting new state-of-the-art results on two automotive classifi-
cation event datasets for spiking neural networks. We then used
these networks combined to SSD bounding box regression
heads to design the first spiking neural networks capable
of doing object detection on the real-world event dataset
Prophesee GEN1, achieving 0.19mAP with less than 10M
parameters. All our SNNs are performant without requiring
an high number of timesteps thanks to our voxel cube event
encoding.

These results highlight the rapid progression of spiking
neural networks in the last few years. For a long time restricted
to small datasets, spiking neural networks now show their
strengths when trained directly on temporal data. Future works
would include the implementation of these spiking neural
networks on a low-power neuromorphic hardware [34], [2],
which will enable power-efficient embedded applications.
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