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A spiking neural network device according to an embodi-

ment 1mcludes a synaptic element, a neuron circuit, a syn-
aptic potentiator, and a synaptic depressor. The synaptic
clement has a variable weight. The neuron circuit inputs a
spike voltage having a magnitude adjusted in accordance
with the weight of the synaptic element via the synaptic
clement, and fires when a predetermined condition 1s satis-
fied. The synaptic potentiator performs a potentiating opera-
tion for potentiating the weight of the synaptic element
depending on input timing of the spike voltage and firing
timing of the neuron circuit. The synaptic depressor per-

forms a depression operation for depressing the weight of
the synaptic element 1n accordance with a schedule inde-

pendent from the input timing of the spike voltage and the
firing timing of the neuron circuit.
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SPIKING NEURAL NET WORK DEVICEL
AND LEARNING METHOD OF SPIKING
NEURAL NETWORK DEVICE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s based upon and claims the benefit of
priority from Japanese Patent Application No. 2019-149790,
filed on Aug. 19, 2019; the enftire contents of which are

incorporated herein by reference.

FIELD

Embodiments described herein relate generally to a spik-

ing neural network device and a learning method of the
same.

BACKGROUND

Artificial intelligence technologies are developing rapidly
with the progress in computing hardware such as graphical
processing units (GPUs). Examples of the artificial intelli-
gence include convolutional neural networks (CNNs), which
are one of the main technologies for image recognition and
image classification, and such technologies have found more
and more real-life applications. Currently widely available
artificial intelligence technologies are based on simplified
mathematical models 1nspired by the operations of biologi-
cal neural networks, and are suitably implemented by com-
puting devices such as GPUs. However, implementing the
artificial intelligence by GPUSs 1s highly energy intensive. In
particular, the learning process including extracting features
from a large amount of data and storing them requires huge
computational operations and thus requires a large amount
of electric energy, which will be a constraint on learming at
the edge.

Human brains, on the other hand, consume less energy of
about 20 W, but can learn a large amount of data constantly
online. Scientists and researchers around the world have
been studying information processing technologies of repro-
ducing the brain operations relatively faithiully using elec-
tric circuits.

In the neural networks of the brains, information 1s
transmitted from neurons to neurons in the form of spike
voltage signals. Neurons are interconnected by, what 1s
called, synapses. When a neuron fires and generates a spike
voltage, the spike voltage 1s mput to downstream neurons
via synapses. The magnitude of the spike voltage input to the
downstream neurons 1s adjusted by the interconnecting
strength (hereinafter referred to as “weight”) of the syn-
apses. A synapse having a large synaptic weight transmits
the spike voltage to a postsynaptic neuron without reducing,
the magnitude of voltage, whereas a synapse having a small
synaptic weight weakens the magnitude of the spike voltage
to be transmitted. In this regard, a larger synaptic weight
between neurons 1ndicates that these neurons have a strong
relation 1n terms of information transmitted therebetween.

It 1s known that the synaptic weight varies depending on
the input timing of the spike voltage to the postsynaptic
neuron and the firing timing of the postsynaptic neuron.
When a spike voltage 1s input from a neuron (presynaptic
neuron) to a subsequent neuron (postsynaptic neuron) via an
interconnecting synapse, and then the postsynaptic neuron
fires, the miformation of the presynaptic neuron and the
information of the postsynaptic neuron have a causal rela-
tionship, and the synaptic weight between these two neurons
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2

increases. Alternatively, if the postsynaptic neuron fires
before receiving the spike voltage from the presynaptic
neuron, the information of the presynaptic neuron and the
information of the postsynaptic neuron have no causal
relationship, and the synaptic weight between these two
neurons decreases. This feature involving a change 1n syn-
aptic weight depending on the input timing of the spike
voltage and the firing timing 1s called spike timing-depen-
dent plasticity (STDP).

An iformation processing technique mimicking the
information processing rules of such neural networks and
representing a flow of information 1n an electric circuit by
using spike trains 1s called a spiking neural network. In the
spiking neural network, no numerical calculations are per-
formed but all the information processing procedures are
performed by storage, generation, and transmission of spike
voltages. Traming a conventional artificial intelligence
requires a huge number of computational processes. How-
ever, the spiking neural network 1s considered to be able to
be trained efliciently by using the STDP rules, and many
studies on spiking neural networks have been made.

As described above, the key feature of STDP 1s that the
synaptic weight varies depending on the input timing of a
spike voltage from a presynaptic neuron to a postsynaptic
neuron via an interconnecting synapse and the firing timing
ol the postsynaptic neuron. This STDP architecture 1s based
on an 1nput of a spike voltage from the presynaptic neuron.
In other words, 1f mput information 1s extremely small, no
spike voltage 1s input from the presynaptic neuron, and the
synaptic weight 1s not changed. This may cause the follow-
ing problems.

Suppose that, for example, a spiking neural network
learns mput 1mage patterns of 10x10 pixels. First, an image
pattern (1mage A) widely spread i a 10x10 pixel grid 1s
input repeatedly. The spiking neural network learns the mnput
data based on the STDP learning rules and updates the
synaptic weight accordingly, thereby obtaining a synaptic
weight distribution corresponding to the image pattern.
Then, another 1image pattern (1mage B) concentrating in the
center of the 10x10 pixel grid 1s mput. That 1s, most of the
pixels of the image B are blank pixels. In spiking neural
networks, iformation 1s represented by the density (spike
density) of spike voltages, and thus blank pixels are repre-
sented as zero spike density. Accordingly, most of the
synapses 1n this neural network receive no spike voltage and
theirr weights are unchanged. In other words, the spiking
neural network 1s not capable of learning this new 1mage B
due to the remaining synaptic weight distribution corre-
sponding to the image A, regardless of how many times the
neural network learns the image B. In this regard, when an
STDP trained network receirves information having a low
spike density, it fails to learn this information and keeps the
previously learned information.

To prevent this problem, a conventional technology dis-
closes a method of preparing two sets of spiking neural
networks, one of which 1s trained by inputting original data
and the other one of which 1s trained by inputting black-
white inverted data. This method requires two sets of spiking
neural networks, requiring twice the number of neurons and
synapses. This configuration may double the size of the
hardware, and double the energy required.

In biological neural networks, the sum of the weights of
synapses 1nput to one neuron 1s constant. This phenomenon
1s called synaptic normalization. In synaptic normalization,
there 1s no change in the relative magnitude between the
synaptic weights, and 1f one synaptic weight increases after
learning, the other synaptic weights decrease to keep the
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sum constant. This configuration reduces the weight of
synapses receiving a low spike voltage. Biological nervous
systems use this scheme to learn blank data having a low
spike density. However, implementing the synaptic normal-
ization 1n hardware can be diflicult because the synaptic
normalization scheme requires adding synaptic weights for
cach neuron and dividing each synaptic weight by the sum.
In the spiking neural networks, as described above, 1nior-
mation 1s represented by spike density and thus information
indicating “nothing” 1s represented as no spike density (no
spikes). When a spiking neural network learns based on the
STDP rules, the spiking neural network updates the synaptic
weilghts depending on the input timing of spike voltages and
the firing timing, and thus fails to learn blank data indicating,
“nothing”, or information having a low spike density.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a schematic diagram 1illustrating STDP rules;

FIG. 2 1s a graph illustrating an example of potentiation
and depression of synaptic weight;

FIG. 3 1s a diagram 1llustrating a specific example of how
a spiking neural network learns;

FIG. 4A 1s a diagram 1illustrating visualized weights of all
the synapses illustrated in FIG. 3;

FIG. 4B 1s a diagram illustrating visualized weights of all
the synapses 1llustrated i FIG. 3;

FI1G. 4C 1s a diagram 1illustrating visualized weights of all
the synapses illustrated in FIG. 3;

FIG. 5 1s a diagram 1illustrating an example configuration
of a spiking neural network device according to a first
embodiment;

FIG. 6 1s a diagram 1llustrating example learning results
of the spiking neural network device according to the first
embodiment;

FIG. 7 1s a diagram illustrating an example hardware
configuration of the spiking neural network device including
resistive random-access memories as synaptic elements;

FIG. 8 1s a diagram 1llustrating an example configuration
of a neuron circuit;

FIG. 9 1s a diagram 1llustrating an example potentiating,
operation;

FIG. 10 1s a diagram 1illustrating an example potentiating,
operation;

FIG. 11 1s a graph illustrating a rate/probability of reduc-

tion 1n resistance of a resistive random-access memory
erence At:;

relative to a time dif

FIG. 12 1s a diagram 1illustrating an example potentiating,
operation;

FI1G. 13 1s a diagram illustrating an example configuration
of a spiking neural network device according to a second
embodiment;

FIG. 14 1s a diagram 1illustrating an example of how an
internal variable of a synaptic element varies;

FIG. 15 1s a diagram 1llustrating example learning results
ol the spiking neural network device according to the second
embodiment;

FIG. 16A 1s a diagram 1llustrating how an internal state of
a resistive random-access memory varies;

FIG. 16B i1s a diagram 1llustrating how the internal state
of the resistive random-access memory varies;

FIG. 16C i1s a diagram 1llustrating how the internal state
of the resistive random-access memory varies; and

FIG. 17 1s a graph illustrating probability of resistance
change 1n the resistive random-access memory relative to
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4

opposite polarity voltage application time and magnitude of
prior voltage applied to the resistive random-access
memory.

DETAILED DESCRIPTION

According to one embodiment, a spiking neural network
device according to an embodiment includes a synaptic
clement, a neuron circuit, a synaptic potentiator, and a
synaptic depressor. The synaptic element has a varniable
weight. The neuron circuit iputs a spike voltage having a
magnitude adjusted in accordance with the weight of the
synaptic element via the synaptic element, and fires when a
predetermined condition 1s satisfied. The synaptic potentia-
tor performs a potentiating operation for potentiating the
weight of the synaptic element depending on input timing of
the spike voltage and firing timing of the neuron circuit. The
synaptic depressor performs a depression operation for
depressing the weight of the synaptic element 1n accordance
with a schedule mdependent from the mput timing of the
spike voltage and the firing timing of the neuron circuit.

The following describes preferred embodiments of a
spiking neural network device and 1ts learning method
according to the present disclosure with reference to the
accompanying drawings.

Explanation on STDP

First, STDP learning rules for a spiking neural network
are described. FIG. 1 1s a schematic diagram illustrating the
STDP rules. As illustrated 1n FIG. 1, a plurality of synapses
S,, S, - - - » 8, (Which may be hereinafter collectively referred
to as synapses s,) are connected to a neuron . Consider a
case 1n which spike voltages x,, X,, . . ., X,_ are mput to the
neuron ] through the synapses s,, s,, . . ., s, , respectively.
Let the weights w, of the synapses s,, s, . . ., s, be w,,
Wins o oo s W respectively.

The state of the neuron j 1s represented by an internal
variable called membrane potential. If no spike voltage 1s
input, the membrane potential varies 1n accordance with a
set rule called a neuron model. An put of a spike voltage
to the neuron j increases the membrane potential discon-
tinuously. After several spike voltages are input to the
neuron j and the membrane potential reaches a threshold, the
neuron ] fires and releases a spike voltage to downstream
neurons. After firing, the membrane potential of the neuron
1 1s reset to a certain value, which 1s called a reset potential.

Suppose that a spike voltage 1s mput to the neuron j via
the synapse s, having the weight w,, at time t 7%, and the
neuron j fires at time t7°*, where At ~t7*"'—t,#™. If At,>0,
that 1s, 1f the neuron 7 fires after receiving the spike voltage
through the synapse s,, the input of the spike voltage and the
firing of the neuron 7 have a causal relation. Thus, connec-
tion of the synapse s; 1s considered to be eflective in
processing information and the weight w,, of the synapse s,
1s potentiated (increased). Conversely, it At <0, that 1s, 1t the
neuron ] fires before the spike voltage reaches the neuron
via the synapse s,, the input of the spike voltage and the
firing of the neuron j have no causal relation. Thus, con-
nection of the synapse s, 1s considered to be not effective in
processing information and the weight w;, of the synapse s,
1s depressed (decreased).

In the STDP trained network, the extent to which the
weight w; of the synapse s, 1s potentiated or depressed is
determined in accordance with the time difference At
between the time at which the neuron j fires and the time at
which the spike voltage 1s input via the synapse s,. In other
words, as illustrated in FIG. 2, if At>0, a time difference At
having a smaller absolute value means a greater informa-
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tional correlation between the firing of the neuron 1 and the
input ot a spike voltage, and thus, the weight w, of the
synapse s, 1s significantly potentiated. If At<0, a time dii-
ference At having a smaller absolute value means a smaller
informational correlation between the firing of the neuron ;
and the 1nput of the spike voltage, and thus, the weight w,
of the synapse s, 1s significantly depressed. In both cases of
At>0 and At<0, the weight w; hardly varies when At has a
large absolute value.

Consider a case in which the spiking neural network 1s
trained using 1image data of 28x28=784 pixels as illustrated
in FI1G. 3. In this case, contrasts of the pixels are iput to 784
neurons in an mput layer. The neurons in the mput layer
generate spike trains having spike densities corresponding to
the contrasts and transmit spike voltages to downstream 400
neurons 1n a subsequent processing layer. The neurons 1n the
mput layer and the neurons in the processing layer are
connected via synapses.

As described above, the neurons 1n the input layer gen-
erate spike trains corresponding to respective contrasts of
the pixels. For a high-contrast pixel (black pixel), a spike
train having a high spike density 1s generated. For a low-
contrast pixel (white pixel), a spike train having a low spike
density 1s generated. Neurons corresponding to blank por-
tions of the input image generate no spike voltage. Accord-
ingly, synapses connecting to the neurons corresponding to
the blank portions of the mput image transmit no spike
voltage to the neurons 1n the processing layer. The weights
of the synapses connecting to the neurons corresponding to
the blank portions of the input 1image are neither potentiated
nor depressed but are still 1n the nitial state. In other words,
the spiking neural network fails to learn information indi-
cating “blankness”.

Consider a case in which the spiking neural network
illustrated 1n FIG. 3 learns the MNIST handwritten digit
dataset (a set of handwritten digits from O to 9). In this
learning, a probabilistic STDP approach 1s taken. In this
approach, the synaptic weight 1s set to a discrete binary
value (O or 1), and 1f a neuron fires after recerving an input
ol a spike voltage via a synapse, the weight of the synapse
1s probabilistically set to 1, whereas 11 the neuron fires before
receiving an input of a spike voltage via a synapse, the
weight of the synapse 1s probabilistically set to 0. To
incorporate a temporal correlation between an mmput of a
spike voltage and the firing of a neuron into this approach,
the probability 1s set depending on the time difference
between the firing of the neuron and the mput of the spike
voltage via a synapse. Specifically, let the time difference be
At, the probability of setting the synaptic weight to 0 (or 1)
1s proportional to exp(—-At/T), where T 1s a constant.

FIGS. 4A to 4C are diagrams illustrating visualized
weilghts of all the synapses (784x400 synapses) connecting,
784 neurons in the mput layer with 400 neurons in the
processing layer as illustrated in FIG. 3. In respective
vertical and horizontal directions, V784x400=28x20=560
pixels are arranged and each pixel represents a correspond-
ing synaptic weight. White pixels represent a synaptic
weight of 0, whereas colored pixels represent a synaptic
weight of 1. The weights of 560x360 synapses are grouped
into 20x20 sections each including 28x28 pixels. Each
section including 28x28 pixels corresponds to the entire
synapses connecting to one neuron in the processing layer,
and has a pattern representing the weight distribution of
28%x28 synapses. This pattern 1s an 1mage stored in the
neuron in the processing layer.

As 1llustrated 1n FI1G. 4 A, first, all the individual synaptic
welghts are randomly set to an 1nitial value of O or 1. The
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spiking neural network 1illustrated 1n FIG. 3 1s trained using
the MINIST handwritten digit dataset 1n this state. FIG. 4B

illustrates synaptic weights after learning 60,000 patterns of
handwritten digits. There are 20x20=400 patterns emerging
in FIG. 4B. Each pattern includes 28x28 pixels. In other
words, a pattern emerges in each section including 28x28
pixels and this pattern 1s an i1mage stored in the neuron
corresponding to this section.

Pixels corresponding to blank portions of the MNIST
handwritten digits remain in the initial state because no
spike voltage 1s input, and thus still have random patterns. At
a center portion of each section, there 1s a seemingly
overlapping pattern of many handwritten digits. When, for
example, a neuron learns a handwritten digit of *“0” and then
learns “1”, the blank portion of the handwritten digit “1”
receives no spike voltage and thus the handwritten digit <“0”
remains 1n the blank portion. The neuron stores both “0” and
“1” 1n an overlapping manner. Such operations are repeated
and the neurons store patterns of overlapping handwritten
digits.

When a recognition operation on the MNIST handwritten
digits 1s performed by using the synaptic weight illustrated
in FIG. 4B, the recognition rate 1s only about 10%. This
result substantially equates to a random guess of the hand-
written digits from O to 9. In other words, the spiking neural
network fails to recognize the handwritten digits at all.

The essence of the problem 1s that neurons receive no
spike voltage corresponding to blank data (1.e., blank por-
tions ol an 1mage), and the weight of the synapses corre-
sponding to these neurons are unchanged, whereby the
synaptic weights are kept in the mtial state or left un-
updated with the previously stored information. Ideally,
synaptic weights corresponding to blank data have to be
depressed. As described above, the neural networks can
learn blank data by implementing the synaptic normalization
of the biological nervous systems.

FIG. 4C 1llustrates the learning results of a spiking neural
network that learns based on the STDP rules and by imple-
menting synaptic normalization in software. It 1s apparent
from FIG. 4C that the synaptic normalization 1s successiul
in traiming the sections each including 28x28 pixels to learn
the MNIST handwritten digits. In this example, the recog-
nition rate on the handwritten digits reaches 89%. However,
synaptic normalization requires the procedure of adding all
the synaptic weights of each section including 28x28 pixels,
dividing each synaptic weight by the sum, and rewriting the
resulting values 1n the synapses. This procedure 1s not suited
to hardware implementation.

In embodiments described below, a spiking neural net-
work device having a novel configuration that depresses
synaptic weights 1n accordance with a schedule independent
from the time difference between an input of a spike voltage
and firing of a neuron, and its learning method are disclosed.

First Embodiment

FIG. § 1s a diagram 1llustrating an example configuration
of a spiking neural network device according to a first
embodiment. As illustrated 1n FIG. 5, the spiking neural
network device according to the first embodiment includes
a neuron circuit 110, a plurality of synaptic elements 120,
120,, . . ., 120, (which may be heremafter collectively
referred to as synaptic elements 120) connected to inputs of
the neuron circuit 110, mput units 130,, 130,, . . ., 130,
(which may be heremnafter collectively referred to as input
units 130) configured to mmput spike voltages to the neuron
circuit 110 via the synaptic elements 120,, 120,, . . ., 120 _,
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respectively, synaptic potentiators 140,, 140,, . . . , 140
(which may be hereinafter collectively referred to as syn-
aptic potentiators 140) configured to potentiate weight w, of
the synaptic elements 120 based on the STDP rules, and a
synaptic depressor 150 configured to depress the weight w,
of the synaptic elements 120 in accordance with a schedule
independent from {iring timing of the neuron circuit 110 and
input timing of spike voltages.

The neuron circuit 110 and the synaptic elements 120 of
the spiking neural network device according to the first
embodiment 1llustrated 1n FIG. 5 correspond to the neuron
1 and the synapses s, 1n FIG. 1, respectively. In the same
manner as the example 1llustrated 1n FIG. 1, weights w of the
synaptic elements 120,, 120,, . . ., 120, are referred to as
weights w.,, w,, . . ., w,,, respectively. The synaptic
potentiators 140 correspond to partial STDPs (portions
configured to potentiate the weight w, ot the synapses s,)
illustrated 1 FIG. 1. In other words, the spiking neural
network device according to the first embodiment illustrated
in FIG. 5 differs from the configuration illustrated 1in FI1G. 1
in that 1t additionally includes the synaptic depressor 150
configured to depress the weight w; of the synaptic elements
120 1n accordance with an independent schedule.

Although FIG. 5 illustrates a single unit including one
neuron circuit 110 of the spiking neural network device, the
actual spiking neural network device includes a huge num-
ber of neuron circuits 110, and thus, as many numbers of
units 1llustrated 1n FIG. 5 are combined to implement the
device. The input units 130 1n FIG. 5 correspond to presyn-
aptic neuron circuits of the neuron circuit 110.

In the spiking neural network device according to the first
embodiment, a spike voltage 1s released from an 1nput unit
130 and input to the neuron circuit 110 via a synaptic
clement 120 connected to this imnput umt 130. The magnitude
of the spike voltage input to the neuron circuit 110 1increases
il the synaptic element 120 has a large weight and decreases
if the synaptic element 120 has a small weight w .

The neuron circuit 110 integrates a spike voltage input
from an mput unit 130 via a synaptic element 120. If the
integrated value exceeds a threshold, the neuron circuit 110
fires and releases a spike voltage to a downstream neuron
circuit. When the neuron circuit 110 fires and releases a
spike voltage, a potentiating operation 1s performed by the
corresponding synaptic potentiator 140 to potentiate the
weight w, of the synaptic element 120.

The synaptic potentiators 140 perform the potentiating
operation to potentiate the weight w, of the synaptic ele-
ments 120 based on the STDP rules. Whether the weight w
of the synaptic elements 120 1s actually potentiated when the
synaptic potentiators 140 perform the potentiating opera-
tions may be probabilistic or deterministic. The probability
or rate of potentiation of a weight w,, 1s determined by a
function f(t7”, t#°*) where t/”° is time at which a spike
voltage is input to a synaptic element 120 and t#°* is time
at which the neuron circuit 110 fires. In other words, when
the synaptic potentiator 140 performs a potentiating opera-
tion, the weight w, ot the synaptic element 120 1s potenti-
ated at a probability or rate 1n accordance with the function
f(t#", t#°*) that depends on the firing timing of the neuron
circuit 110 and the mput timing of the spike voltage.

The synaptic depressor 150 depresses the weight w, of the
synaptic elements 120 1n accordance with a schedule g(t)
defined 1independently from the firing timing of the neuron
circuit 110 and the 1nput timing of a spike voltage. In the
schedule g(t), t indicates simple time or a parameter corre-
sponding to time (parameter indicating the progress of
neural network processing). The schedule g(t) 1s indepen-
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dent from the firing timing of the neuron circuit 110 and the
input timing ot the spike voltage. Whether the weight w, of
the synaptic elements 120 1s actually depressed when the

synaptic depressor 150 performs a depression operation may
be probabilistic or deterministic. In other words, when the

synaptic depressor 150 performs a depression operation 1n

accordance with the schedule g(t), the weights w,,
Wi, - - . » W, O the synaptic elements 120, 120,, . . ., 120,

may be depressed at a predetermined probability (e.g., 0.1%)
or collectively depressed by a predetermined depression rate
(e.g., 0.1% of the maximum value of the weight w).

Synaptic weight in biological neural networks 1s known to
potentiate or depress probabilistically. In this regard, 1f the
spiking neural network device 1s configured to potentiate the
weight w; of the synaptic elements 120 upon a potentiating
operation of the synaptic potentiators 140 and depress the
weight w, of the synaptic elements 120 upon a depression
operation of the synaptic depressor 150 1n a probabilistic
manner, this probabilistic configuration 1s considered to be
more successiul in faithiully mimicking the information
processing scheme of the biological neural networks.

The following describes a specific example of a learning
operation of the spiking neural network device according to
the first embodiment. Suppose that, 1n this example, the
weight of the synaptic elements 120 1s a discrete binary
having a value of 0 or 1 and the weight w; of the synaptic
clements 120 1s potentiated and depressed probabailistically.
Consider a case 1n which a plurality of the units illustrated
in FIG. § are combined to configure the spiking neural
network illustrated 1n FIG. 3 and this spiking neural network
1s trained using the MNIST handwritten digit dataset. In this
case, the neuron circuit 110 corresponds to each neuron 1n
the processing layer i FIG. 3, and the mput units 130
correspond to the neurons 1n the mput layer in FIG. 3.

The schedule g(t) of the depression operation performed
by the synaptic depressor 150 1s defined as follows:

g(1): a depression operation 1s performed on the weight w,
of all the synaptic elements 120 every time one handwritten
digit 1s 1nput.

In a depression operation, the weight w;; of the synaptic
clements 120 1s depressed from 1 to O at a probability g. The
weight w,, of the synaptic elements 120 will never be
depressed 1n any other event.

The function f(t#"*, t#**), based on which the synaptic
potentiators 140 perform the potentiating operation, 1s
defined as follows:

f (77, t77°) t£7°<t#°* and if no spike voltage is input to
the same synaptic element 120 between t7”° and t#°* (that
1s, 11 a spike voltage mput at t7° 1s i1dentical to the spike
voltage input immediately before the firing of the neuron
circuit 110), the weight w,; of the synaptic element 120 1s
potentiated to 1 at a probability Aexp((t/"*-t#°*)/T), where
A and T are constants. The weight w,, will never be poten-
tiated 1n any other events.

The spiking neural network device according to the first
embodiment configured as described above learns the
MNIST handwntten digit dataset and the results of the
learning operation are illustrated in FIG. 6. In the same
manner as in the example illustrated i FIG. 4B, FIG. 6
illustrates the learning results of 20x20=400 sections each
including 28x28 pixels. Handwritten digits clearly emerge
in all the sections indicating that the neurons corresponding
to the sections have successtully learned the handwritten
digits. When the spiking neural network device actually
performs a recognition operation on the MNIST handwritten
digits using the synaptic weights, the recognition rate
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reaches about 78%. This means that the spiking neural
network has been trained appropriately.

The learning results of this example significantly differ
from those of the example in FIG. 4B i that no pixels
corresponding to the blank portions of the handwritten digits
keep the mitial value of 1 and that the center of each section
has no overlapping handwritten digits. This 1s because blank
information 1s retlected on the weight w; of the synaptic
clements 120 in the depression operation performed 1n
accordance with the schedule g(t) and the 1nitial distribution
of the weight w,, of the synaptic elements 120 or the past
learning results can be deleted as necessary. As a result, the
spiking neural network can learn the handwritten digits
correctly. It should be noted that the spiking neural network
device according to the first embodiment does not imple-
ment the synaptic normalization. Since the spiking neural
network device includes the synaptic depressor 150 that
performs the depression operation in accordance with the
schedule g(t), it can learn the blank information without
implementing the synaptic normalization and is suitable for
hardware implementation.

For implementing the synaptic elements 120 1n the first
embodiment 1n specific hardware, non-volatile memories
can be used. In other words, information stored in the
non-volatile memories may be used as the weight w; of the
synaptic elements 120 (synapses s.). By using the non-
volatile memories and the writing scheme corresponding to
the characteristics of the memories, the spiking neural
network device can potentiate the weight w; ot the synapses
s, depending on the firing timing of the neuron circuit 110
and the mput timing of a spike voltage and depress the
weight w, of the synapses s, in accordance with the schedule
g(t) independent from the firing timing of the neuron circuit
110 and the input timing of the spike voltage.

Non-volatile memories suitable for implementing the
synaptic elements 120 are, for example, resistive random-
access memories. The resistive random-access memories are
made from a thin film or a laminate of metal oxide such as
hatnium oxide (HIO,), titanium oxide (110, ), tantalum
oxide (TaO,), aluminum oxide (AlO,), tungsten oxide
(WO,), magnesium oxide (MgO_ ), and strontium titanate
(Sr110) sandwiched between electrodes, or made from a
thin film or a laminate of solid 1on conductor such as silicon
oxide (S10,), tantalum oxide (TaO, ), germanium sulfide
(GeS), and germanium selenide (GeSe) sandwiched between
clectrodes. The resistive state of the resistive random-access
memories varies upon application of a voltage equal to or
higher than a threshold. Alternatively, the resistive random-
access memories may be made from a ferroelectric thin film
such as hatnium oxide (H1O, ) or hatnium silicon oxide
(HIS10 ) sandwiched between electrodes. Application of
voltage equal to or higher than a threshold changes the
polarization state of the ferroelectric thin film, thereby
changing the resistive state. The resistive state stored in the
resistive random-access memories can be used as the weight
w; of the synapses s,.

Described next 1s a specific example of the hardware
configuration including the resistive random-access memo-
ries as the synaptic elements 120. FIG. 7 1s a diagram
illustrating an example hardware configuration of the spik-
ing neural network device including resistive random-access
memories as the synaptic elements 120.

A plurality of horizontal wires (word lines) 201 and a
plurality of vertical wires (bit lines) 202 cross each other. At
the intersections of the word lines 201 and the bit lines 202,
resistive random-access memories 210 functioning as the
synaptic elements 120 are connected. One word line 201 1s
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clectrically connected with one bit line 202 only via one
resistive random-access memory 210.

The word lines 201 are each connected to a presynaptic
voltage generator 220. The presynaptic voltage generator
220 mputs a voltage signal (presynaptic voltage) corre-
sponding to a spike voltage to the word line 201 upon {iring
of a presynaptic neuron. The bit lines 202 are each connected
to a neuron circuit 110 and a postsynaptic voltage generator
230. The postsynaptic voltage generator 230 inputs a certain
voltage signal (postsynaptic voltage) to the bit line 202 upon
firing of the neuron circuit 110.

FIG. 8 1llustrates an example configuration of the neuron
circuit 110. As illustrated 1n FIG. 8, for example, the neuron
circuit 110 includes an integration circuit 111 that integrates
the current flowing 1n the bit line 202, a threshold compara-
tor circuit 112 that compares an output of the integration
circuit 111 with a threshold, a spike generation circuit 113
that generates and outputs a spike voltage (fires) 1f the output
of the integration circuit 111 exceeds the threshold. When
the output of the mtegration circuit 111 exceeds the thresh-
old and the spike generation circuit 113 outputs a spike
voltage, the threshold comparator circuit 112 outputs a reset
signal to reset the integration circuit 111.

When the presynaptic voltage generator 220 inputs a
presynaptic voltage to the word line 201, electric current
flows 1nto the bit lines 202 via the resistive random-access
memories 210 connected to the word line 201. In each
neuron circuit 110, the current flowing 1n the bit line 202 1s
integrated in the integration circuit 111 and the integrated
value 1s compared with a preset threshold in the threshold
comparator circuit 112. If the itegrated value exceeds the
threshold, the spike generation circuit 113 outputs a spike
voltage. In other words, firing occurs. The value of the
current tlowing from the word line 201 to the bit lines 202
1s determined depending on the resistive state of the resistive
random-access memories 210. In this regard, the resistive
state of the resistive random-access memories 210 can be
regarded as the weight w, of the synapses s, A lower
resistance of a resistive random-access memory 210 means
a larger weight w, since a lower resistance allows a larger
current to flow, whereas a higher resistance of a resistive
random-access memory 210 means a smaller weight since a
higher resistance only allows a smaller current to flow.

When the neuron circuit 110 fires, the postsynaptic volt-
age generator 230 applies a postsynaptic voltage to the bit
line 202 as 1illustrated 1in FIG. 9. To the resistive random-
access memory 210, a voltage 1s applied corresponding to a
difference between the presynaptic voltage applied to the
word line 201 and the postsynaptic voltage applied to the bit
line 202. If the difference 1s larger than a constant value Vth,
the resistive state of the resistive random-access memory
210 changes.

As 1llustrated 1n FIG. 10, for example, suppose that a
rectangular wave voltage having an amplitude a and a
duration T 1s input to the word line 201 as a presynaptic
voltage signal, the neuron circuit 110 fires At later, and a
rectangular wave voltage having an amplitude -b 1s applied
to the bit line 202 as a postsynaptic voltage, where 0<a<Vth,
0<b<Vth, and a+b>Vth. In this case, a voltage having an
amplitude a+b 1s applied to the resistive random-access
memory 210 for a time T-At. Application of this voltage
changes the resistive state of the resistive random-access
memory 210. The polarity of the voltage a+b is set such that
the application of the voltage reduces the resistance of the
resistive random-access memory 210.

The resistive state of the resistive random-access memory
210 varies depending on the voltage application time T-At.
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I1 the resistive state of the resistive random-access memories
210 varies 1n a deterministic manner, a smaller At leads to a
longer voltage application time T-At, resulting 1n a higher
reduction rate of resistance, whereas a larger At leads to a
shorter voltage application time T-At, resulting 1n a lower
reduction rate of resistance (see FIG. 11). In other words, 11
the application of the postsynaptic voltage triggered by
firing of the neuron circuit 110 occurs more 1mmediately
aiter the application of the presynaptic voltage, the rate of
reduction 1n the resistance of the resistive random-access
memory 210 and the rate of potentiation of the weight w, of
the synapse s, increase. If firing of the neuron circuit 110 and
application of the postsynaptic voltage occur much later
alter the application of the presynaptic voltage, the rate of
reduction 1n the resistance of the resistive random-access
memory 210 and the rate of potentiation ot the weight w; of
the synapse s, decrease.

If the resistive state of the resistive random-access memo-
ries 210 varies in a probabilistic manner, a smaller At leads
to a longer voltage application time T-At and thus the
resistance 1s reduced at a higher probability, whereas a larger
At leads to a shorter voltage application time T-At and thus
the resistance 1s reduced at a lower probability (see FIG. 11).
In other words, 11 the application of the postsynaptic voltage
triggered by firing of the neuron circuit 110 occurs more
immediately after the application of the presynaptic voltage,
the probability of reduction 1n the resistance of the resistive
random-access memory 210 and the probability of poten-
tiation of the weight w, of the synapse s, increase. If firing
of the neuron circuit 110 and application of the postsynaptic
voltage occur much later after the application of the pre-
synaptic voltage, the probability of reduction 1n the resis-
tance ol the resistive random-access memory 210 and the
probability of potentiation of the weight w, of the synapse
s, decrease.

Alternatively, as illustrated in FIG. 12, for example,
suppose that a triangular wave voltage having an initial
amplitude of a and linearly decaying to O 1n a duration T 1s
input to the word line 201 as a presynaptic voltage signal, the
neuron circuit 110 fires At later, and a spike voltage having
an amplitude —b 1s applied to the bit line 202 as a postsyn-
aptic voltage. In this case, a spike voltage having an ampli-
tude a+b-At-a/T 1s applied to the resistive random-access
memory 210. The polarity of the spike voltage applied to the
resistive random-access memory 210 1s set such that the
application of the voltage reduces the resistance of the
resistive random-access memory 210.

In this example, a smaller At leads to a higher amplitude
of the spike voltage to be applied to the resistive random-
access memory 210. Thus, the resistance of the resistive
random-access memory 210 1s reduced at a higher rate or
probability (see FIG. 11). Alternatively, a larger At leads to
a lower amplitude of the spike voltage to be applied to the
resistive random-access memory 210. Thus, the resistance of
the resistive random-access memory 210 1s reduced at a
lower rate or probability (see FIG. 11). In this example, 1f the
application of the postsynaptic voltage triggered by firing of
the neuron circuit 110 occurs more immediately after the
application of the presynaptic voltage, the rate of potentia-
tion of the weight w;, of the synapse s, increases or the
probability of potentiation of the weight w,, ot the synapse
s, increases. If firing of the neuron circuit 110 and applica-
tion of the postsynaptic voltage occur much later after the
application of the presynaptic voltage, the rate or the prob-
ability of potentiation of the weight w, of the synapse s,
decreases.
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As described above, 11 the spiking neural network device
has the hardware configuration illustrated in FIG. 7, the
resistive state (corresponding to the weight w,, ot the syn-
apses s,) of the resistive random-access memories 210 as the
synaptic elements 120 varies depending on the timing at
which the postsynaptic voltage generator 230 applies a
postsynaptic voltage to the bit line 202 upon firing of the
neuron circuit 110. In other words, the postsynaptic voltage
generator 230 corresponds to the synaptic potentiator 140
illustrated 1n FIG. 5

With regard to the depression operation for depressing the
weight w; of the synapses s;, a synaptic depression timing
determination circuit 240 1llustrated in FIG. 7 determines the
timing of the depression operation 1n accordance with the
schedule g(t). When the depression operation timing comes,
the synaptic depression timing determination circuit 240
transmits signals to the presynaptic voltage generators 220
and to the postsynaptic voltage generators 230 to trigger the
depression operation for increasing the resistance value of
the resistive random-access memories 210, that 1s, for
depressing the weight w, of the synapses s,.

The synaptic depression timing determination circuit 240
determines whether the timing of the depression operation
defined by the schedule g(t) has come. Specifically, for
example, 1t determines whether pre-scheduled time has
come or whether timing corresponding to a progress of the
neural network processing has come (e.g., timing after one
handwritten digit 1s input). If the synaptic depression timing,
determination circuit 240 determines that the depression
operation timing has come, for example, 1t transmits an
istruction to the presynaptic voltage generators 220 to
apply voltage to the word lines 201 and also transmits an
istruction to the postsynaptic voltage generators 230 to

ground the bit lines 202. Accordingly, voltages are applied
from the word lines 201 to the resistive random-access
memories 210 disposed at the intersections between the
word lines 201 and the bit lines 202. The polarity, amplitude,
and application time of the voltage are set such that the
resistance value of the resistive random-access memories
210 increases at a desired rate or at a desired probability.
Application of the voltage increases the resistance value of
the resistive random-access memories 210 and can depress
the weight w, of the synapses s, in a probabilistic or
deterministic mannetr.

In the spiking neural network device having the hardware
configuration illustrated 1n FIG. 7, the depression operation
1s implemented such that the presynaptic voltage generators
220 apply voltage to the word lines 201 and the postsynaptic
voltage generators 230 ground the bit lines 202 at the
depression operation timing determined by the synaptic
depression timing determination circuit 240, and voltage 1s
applied to the resistive random-access memories 210 from
the word lines 201. The synaptic depression timing deter-
mination circuit 240, the presynaptic voltage generators 220,
and the postsynaptic voltage generators 230 implement the
synaptic depressor 150 illustrated 1n FIG. 5.

The hardware configuration illustrated in FIG. 7 1s a
specific example of the hardware configuration for imple-
menting the spiking neural network device according to the
first embodiment, and the hardware configuration for 1imple-
menting the spiking neural network device according to the
first embodiment 1s not limited to the example illustrated 1n
FIG. 7. The spiking neural network device according to the
first embodiment may have any configuration that can
potentiate the weight w, of the synaptic elements 120
depending on the mmput timing of the spike voltage and the
firing timing of the neuron circuit 110 and can depress the
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weight w, of the synaptic elements 120 1 accordance with
the schedule g(t) independent from the mput timing of the

spike voltage and the firing timing of the neuron circuit 110.

As described with reference to the specific examples
above, the spiking neural network device according to the
first embodiment includes, as a learning mechanism for a
spiking neural network, the synaptic potentiators 140 con-
figured to potentiate the weight w;, of the synaptic elements
120 depending on the mput timing of the spike voltage and
the firing timing of the neuron circuit 110 and the synaptic
depressor 150 configured to depress the weight w, of the
synaptic elements 120 1n accordance with the schedule g(t)
independent from the input timing of the spike voltage and
the firing timing of the neuron circuit 110. The spiking
neural network device can appropriately learn blank data
indicating “nothing” such as blank portions of handwritten
digits, or in other words, information having a low spike
density. This configuration eliminates the need for preparing
two sets of spiking neural networks for learning information
having a low spike density, which 1s disclosed 1n S. Sidler,
A. Pantazi, S. Woznmiak, Y. Leblebici, and E. Eleftheriou,
“Unsupervised learning using phase-change synapses and
complementary patterns”, International Symposium on Arti-
ficial Neural Networks (Springer 2017), pp. 281-288. The
spiking neural network device according to the first embodi-
ment can learn information having a low spike density
without increasing the device size or energy consumption
necessary for the learning.

Second Embodiment

FI1G. 13 1s a diagram illustrating an example configuration
of a spiking neural network device according to a second
embodiment. As illustrated 1in FIG. 13, the spiking neural
network device according to the second embodiment
includes a plurality of synaptic elements 120,, 120,, . . .,
120, having weights w;;, W, . . . , w,, and also having
internal variables q;,, q,», . . ., q;,, respectively. The other
configurations and the basic operation of this spiking neural
network device are the same as those of the first embodi-
ment, and thus the following only describes the diflerences
between the first embodiment and the second embodiment.

In the spiking neural network according to the second
embodiment, the internal variables q;; of the synaptic ele-
ments 120 define the probability or rate at which the weight
w; of the synaptic elements 120 1s depressed in the depres-
sion operation. The value of the internal variables g, of the
synaptic elements 120 1s determined depending on the firing
history of the neuron circuit 110.

The following describes a specific example of a learming,
operation of the spiking neural network device according to
the second embodiment with reference to the same examples
as those of the first embodiment. That 1s, the weight w; of
the synaptic elements 120 1s a discrete binary having a value
of 0 or 1 and the weight w, of the synaptic elements 120 1s
potentiated and depressed probabilistically. Consider a case
in which a plurality of the units illustrated 1n FIG. 13 are
combined to configure the spiking neural network illustrated
in FI1G. 3 and this spiking neural network 1s trained using the
MNIST handwrnitten digit dataset. The schedule g(t) for the
depression operation and the condition f(t™, t7°*) for the
potentiating operation are the same as those of the first
embodiment above. The internal variables q,, represent the
probabilities (depression probabilities) at which the weight
w,; of the synaptic elements 120 are depressed from 1 to O
in a depression operation performed 1n accordance with the

schedule g(t).
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If the weight w,; of a synaptic element 120 1s 1 and the
neuron circuit 110 fires, the spike voltage input to the neuron
circuit 110 via this synaptic element 120 1s considered to
contribute to the firing of the neuron circuit 110 (it the
weight w,; 1s 0, the spike voltage never contributes to the
firing of the neuron circuit 110). In other words, the con-
nection of the synaptic element 120 having the weight w, of
1 can be considered important for the firing of the neuron
circuit 110. To maintain the weight w,, ot 1 as much as
possible, the value of the internal vaniable g, ot the synaptic
element 120 having the weight w;; ot 1 1s reduced to reduce
the probability of depression.

As 1llustrated 1n FIG. 14, for example, when the weight
w,; of a synaptic element 120 1s potentiated from 0 to 1, the
internal variable q;; of this synaptic element 120 1s set to an
initial value . The more times the neuron circuit 110 fires,
the smaller the internal variable g;, becomes than the current
one. In other words, every time the neuron circuit 110 fires,
the mternal variable g;; ot the synaptic element 120 varies
from q', q", q", ..., where, g>q'>q">q'" . ... As more firing
events ol the neuron circuit 110 occur with the synaptic
element 120 having the weight w,; of 1, the weight w; ot the
synaptic element 120 becomes less likely to decrease and
more likely to keep the value of 1. In other words, this
configuration can prevent deletion of important information
when the synaptic depressor 150 performs the depression
operation in accordance with the schedule g(t), thereby
turther increasing the learning accuracy.

The spiking neural network device according to the
second embodiment configured as described above learns
the MINIST handwrnitten digit dataset and the results of the
learning operation are illustrated 1n FIG. 15. In this example,
q=0.1%, q'=qg/2, q"=q/2, and g'"'=q"/2. When a recognition
operation on the MNIST handwrntten digits 1s performed
using the synaptic weights illustrated in FIG. 15, the rec-
ognition rate reaches about 81.1%, which 1s higher than that
of the recognition operation using the synaptic weights
illustrated 1n FIG. 6 that are the learning results of the first
embodiment.

The spiking neural network device according to the
second embodiment includes internal variables g, i addi-
tion to the weight w, of the synaptic elements 120. When the
weight w; of a synaptic element 120 1s 1 (already potenti-
ated) and the neuron circuit 110 fires, the internal variable g,
in the synaptic element 120 reduces the probability at which
the weight w; of the synaptic element 120 1s depressed to 0.
Typically, implementing this configuration specific to the
second embodiment 1n hardware requires as many numbers
of additional memory elements as the increased number of
variables. However, the internal variables q;; can be imple-
mented by using, for example, the resistive random-access
memories 210 illustrated 1n FIG. 7 as the synaptic elements
120 without increasing the number of memory elements.

Suppose that a resistive random-access memory 210 1s in
a low resistive state (weight w,=1). It the resistive random-
access memory 210 1s made from, for example, a metal
oxide thin film or a solid 1on conductor thin film, this low
resistive state 1s such that a conductor pathway vertically
passes through a film insulator 211 as illustrated 1n FIG.
16A. The conductor pathway 1s formed by a conductor
portion 212 such as oxygen vacancies or metallic 1ons
formed 1nside the insulator 211.

Suppose that a depression operation 1s performed in this
state. Specifically, a positive voltage (having an amplitude
higher than the constant value Vth) 1s applied to the insulator
film from above, and the oxygen vacancies or metallic 10ns,

which have positive charge, move downward. As 1llustrated
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in FIG. 16B, the conductor portion 212 shrinks and the
conductor pathway passing through the isulator 211 disap-
pears, whereby the resistive state of the resistive random-
access memory 210 1s changed to a high resistive state
(weight w,=0). This change 1n resistive state depends on the
distribution of oxygen vacancies or metallic 10ns 1nside, and
thus occurs probabilistically. Let this probability be q.

Alternatively, suppose that the resistive random-access
memory 210 1s in a high resistive state (weight w,=0) and
receives a postsynaptic voltage, and a negative voltage
(having an amplitude higher than the constant value Vth) 1s
applied to the msulator film from above. In this case, the
oxygen vacancies or metallic 1ons move upward, thereby
increasing the conductor portion 212 and forming the con-
ductor pathway again that vertically passes through the
insulator 211. The resistive state of the resistive random-
access memory 210 1s changed to a low resistive state
(weight w,=1).

Consider a case in which the resistive random-access
memory 210 1s 1n a low resistive state (weight w,=1) as
illustrated 1 FIG. 16A and receives a postsynaptic voltage
upon firing of the neuron circuit 110, that is, a case 1n which
a negative voltage 1s applied to the insulator film from
above. In this case, the conductor pathway 1s already formed
inside the insulator film. Upon application of voltage, the
oxygen vacancies or metallic 1ons forming the conductor
portion 212 are attracted upward 1n the insulator film, and
then the conductor pathway in the upper portion of the
insulator film 1s widened, or potentiated, as illustrated in
FIG. 16C.

If a depression operation 1s performed 1n this state, the
oxygen vacancies or metallic 1ons move downward. How-
ever, the wider conductor pathway in the upper portion of
the 1nsulator film than the pathway illustrated in FIG. 16A
prevents the conductor pathway from disappearing, and thus
the resistive random-access memory 210 will not be easily
changed to a high resistive state (weight w;,=0). In other
words, let the probability of the resistive random-access
memory 210 becoming a high resistive state (weight w,,=0)
from the state of FIG. 16C 1n a depression operation be g/,
S

If the resistive random-access memory 210 1n the state of
FIG. 16C receives a postsynaptic voltage again upon firing
ol the neuron circuit 110, the conductor pathway 1n the upper
portion of the insulator film further widens, thereby further
reducing the probability of the resistive random-access
memory 210 becoming the high resistive state (weight
w;=0) 1n a depression operation. In other words, let this
probability be q", g>q'>q". As described above, using the
properties of the resistive random-access memories 210 can
implement the internal variables of the synaptic elements
120 (i.e., depression probabilities of the weight w, of the
synaptic elements 120) that vary in accordance with the
internal states as illustrated 1n FIG. 14.

FIG. 17 1s a graph 1llustrating the probability of resistance
change relative to opposite polarity voltage application time.
Specifically, to obtain the graph, first, a prior voltage 1s
applied to the resistive random-access memory 210 made
from a metal oxide thin film for a certain time, and then, an
opposite polarity voltage i1s applied to change the resistive
state. According to the graph, application of the prior voltage
for 10 milliseconds reduces the probability of resistance
change, compared to application of the prior voltage for one
millisecond. Considering the prior voltage to be the post-
synaptic voltage and the opposite polarity voltage to be the
voltage applied 1n the depression operation, 1t 1s apparent
that the more times the neuron circuit 110 fires and the more
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times the postsynaptic voltage 1s applied, the lower the
depression probability of the weight w, becomes.

Although the resistive random-access memories 210 have
been described above, the same discussion can be applied to
typical non-volatile memories. The typical non-volatile
memories can also implement the internal variables g;; of the
synaptic elements 120 by using their internal physical states,
since they operate using the internal physical states such as
charge storage amounts and polarization.

In the spiking neural network device according to the
second embodiment, the method of implementing the inter-
nal variables q,; of the synaptic elements 120 1s not limited
to using the change in the internal physical states of the
non-volatile memories. For example, the spiking neural
network device may include storage that stores the firing
history of each neuron circuit 110. When the depression
operation 1s performed according to the schedule g(t), the
magnitude of the voltage to be applied to each synaptic
clement 120 may be changed in accordance with the firing
history of the neuron circuit 110 connected to the synaptic
clement 120 (1n other words, as more firing events occur, a
smaller voltage 1s applied to the synaptic element 120). Thas
configuration can be mmplemented 1n, for example, the
hardware configuration illustrated mn FIG. 7 such that the
postsynaptic voltage generators 230 apply a counter voltage
that increases with the firing history (historical firing events)
of the neuron circuit 110 to the bit lines 202, instead of
grounding the bit lines 202, in the depression operation to
lower the voltage to be applied to the synaptic elements 120
(the resistive random-access memories 210 1n FIG. 7).

As described above, the spiking neural network device
according to the second embodiment changes the probability
or the rate at which the weight w, of the synaptic elements
120 1s depressed 1n a depression operation, depending on the
firing history of each neuron circuit 110. In this regard, the
more times the neuron circuit 110 fires, the less likely the
weight w; of the synaptic element 120 1s depressed. This
configuration can eflectively prevent deletion of important
information in the depression operation performed 1n accor-
dance with the independent schedule g(t), and can train the
spiking neural network more eflectively.

According to at least one of the embodiments described
above, a spiking neural network device that can leamn
information having a low spike density without increasing
the device size or energy consumption necessary for the
learning and its learning method can be provided.

While certain embodiments have been described, these
embodiments have been presented by way of example only,
and are not intended to limit the scope of the mventions.
Indeed, the novel embodiments described herein may be
embodied 1n a variety of other forms; furthermore, various
omissions, substitutions and changes in the form of the
embodiments described herein may be made without depart-
ing from the spirit of the inventions. The accompanying
claims and their equivalents are intended to cover such
forms or modifications as would fall within the scope and
spirit of the mventions.

What 1s claimed 1s:

1. A spiking neural network device, comprising;:

a synaptic circuit having a variable weight;

a neuron circuit to which a spike voltage having a
magnitude adjusted 1n accordance with the weight of
the synaptic circuit 1s input via the synaptic circuit, the
neuron circuit being configured to fire when a prede-
termined condition 1s satisfied;

a synaptic potentiation circuit configured to perform a
potentiating operation for potentiating the weight of the
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synaptic circuit depending on 1mput timing of the spike
voltage and firing timing of the neuron circuit; and
a synaptic depression circuit configured to perform a
depression operation for depressing the weight of the
synaptic circuit in accordance with a schedule indepen-
dent from the mput timing of the spike voltage and the
firing timing of the neuron circuit.
2. The spiking neural network device according to claim
1, wherein the weight of the synaptic circuit takes discrete
values.
3. The spiking neural network device according to claim
1, wherein the weight of the synaptic circuit 1s potentiated
probabilistically upon occurrence of the potentiating opera-
tion.
4. The spiking neural network device according to claim
1, wherein the weight of the synaptic circuit 1s depressed
probabilistically upon occurrence of the depression opera-
tion.
5. The spiking neural network device according to claim
1, wherein the weight of the synaptic circuit 1s depressed at
a probability or a rate depending on a firing history of the
neuron circuit.
6. The spiking neural network device according to claim
1, wherein the synaptic circuit includes a non-volatile
memory, and the weight of the synaptic circuit corresponds
to mnformation stored in the non-volatile memory.
7. The spiking neural network device according to claim
1, wherein
the schedule defines a operation timing of performing the
depression operation, the operation timing 1s indepen-
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dent from the mput timing of the spike voltage and the
firing timing of the neuron circuit, and

the synaptic depression circuit 1s configured to perform

the depression operation when the operation timing
comes.

8. The spiking neural network device according to claim

7, wherein
the synaptic depression circuit probabilistically deter-

mines whether the weight of the synaptic circuit 1s
depressed or not.

9. A learning method of a spiking neural network device
including
a synaptic circuit having a variable weight, and

d

neuron circuit to which a spike voltage having a
magnitude adjusted 1n accordance with the weight of
the synaptic circuit 1s input via the synaptic circuit, the
neuron circuit being configured to fire when a prede-
termined condition 1s satisfied, the learning method
comprising:

performing a potentiating operation for potentiating the

weight of the synaptic circuit depending on input
timing of the spike voltage and firing timing of the
neuron circuit; and

performing a depression operation for depressing the

weight of the synaptic circuit 1n accordance with a
schedule independent from the input timing of the spike
voltage and the firing timing of the neuron circuit.
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